Math Problem Statement

Find the derivative of y ^ x + x ^ (cos y) = arcsin((2x)/(1 + x ^ 2))

Solution

We are tasked with finding the derivative of the equation:

yx+xcos(y)=arcsin(2x1+x2)y^x + x^{\cos(y)} = \arcsin\left(\frac{2x}{1 + x^2}\right)

Step 1: Implicit differentiation

To differentiate implicitly, we apply the derivative to both sides with respect to xx, treating yy as a function of xx, i.e., y=y(x)y = y(x).

Differentiate the left-hand side:

  1. First term: yxy^x

    • We apply logarithmic differentiation: ddx(yx)=yx(ln(y)+xydydx)\frac{d}{dx}\left(y^x\right) = y^x \left( \ln(y) + \frac{x}{y} \frac{dy}{dx} \right)
  2. Second term: xcos(y)x^{\cos(y)}

    • Again, apply logarithmic differentiation: ddx(xcos(y))=xcos(y)(cos(y)xsin(y)dydxln(x))\frac{d}{dx}\left(x^{\cos(y)}\right) = x^{\cos(y)} \left( \frac{\cos(y)}{x} - \sin(y) \frac{dy}{dx} \ln(x) \right)

Differentiate the right-hand side:

The derivative of the right-hand side is: ddx(arcsin(2x1+x2))\frac{d}{dx}\left( \arcsin\left(\frac{2x}{1 + x^2}\right) \right) Let z=2x1+x2z = \frac{2x}{1 + x^2}, then: ddx(arcsin(z))=11z2ddx(z)\frac{d}{dx}\left(\arcsin(z)\right) = \frac{1}{\sqrt{1 - z^2}} \cdot \frac{d}{dx}(z) Now, differentiate zz: ddx(2x1+x2)=(1+x2)22x2x(1+x2)2=2(1x2)(1+x2)2\frac{d}{dx} \left(\frac{2x}{1 + x^2}\right) = \frac{(1 + x^2) \cdot 2 - 2x \cdot 2x}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2} Thus: ddxarcsin(2x1+x2)=11(2x1+x2)22(1x2)(1+x2)2\frac{d}{dx} \arcsin\left(\frac{2x}{1 + x^2}\right) = \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \cdot \frac{2(1 - x^2)}{(1 + x^2)^2} Since 1(2x1+x2)2=(1+x2)24x2(1+x2)2=(1x2)2(1+x2)21 - \left( \frac{2x}{1 + x^2} \right)^2 = \frac{(1 + x^2)^2 - 4x^2}{(1 + x^2)^2} = \frac{(1 - x^2)^2}{(1 + x^2)^2}, the derivative becomes: 2(1x2)(1+x2)(1x2)=21+x2\frac{2(1 - x^2)}{(1 + x^2) \cdot (1 - x^2)} = \frac{2}{1 + x^2}

Step 2: Combine the derivatives

Now, combine everything and solve for dydx\frac{dy}{dx}:

yx(ln(y)+xydydx)+xcos(y)(cos(y)xsin(y)dydxln(x))=21+x2y^x \left( \ln(y) + \frac{x}{y} \frac{dy}{dx} \right) + x^{\cos(y)} \left( \frac{\cos(y)}{x} - \sin(y) \frac{dy}{dx} \ln(x) \right) = \frac{2}{1 + x^2}

Group the terms containing dydx\frac{dy}{dx} and solve:

dydx(yxxyxcos(y)sin(y)ln(x))=21+x2yxln(y)xcos(y)cos(y)x\frac{dy}{dx} \left( y^x \frac{x}{y} - x^{\cos(y)} \sin(y) \ln(x) \right) = \frac{2}{1 + x^2} - y^x \ln(y) - x^{\cos(y)} \frac{\cos(y)}{x}

Thus, the derivative dydx\frac{dy}{dx} is:

dydx=21+x2yxln(y)xcos(y)cos(y)xyxxyxcos(y)sin(y)ln(x)\frac{dy}{dx} = \frac{\frac{2}{1 + x^2} - y^x \ln(y) - x^{\cos(y)} \frac{\cos(y)}{x}}{y^x \frac{x}{y} - x^{\cos(y)} \sin(y) \ln(x)}


Let me know if you want further clarification or details.

Related Questions:

  1. How would you solve yx=ky^x = k for yy explicitly?
  2. What happens when yy is constant, and how does that simplify the derivative?
  3. Can you differentiate other functions like exye^{x^y} implicitly?
  4. How would you apply the chain rule for f(g(x))=arcsin(x)f(g(x)) = \arcsin(x)?
  5. Could this problem be solved using logarithmic differentiation for both sides?

Tip: Always group terms involving dydx\frac{dy}{dx} when performing implicit differentiation to simplify the solving process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Implicit Differentiation
Logarithmic Differentiation
Trigonometric Functions
Chain Rule

Formulas

Implicit differentiation of y^x: d/dx (y^x) = y^x (ln(y) + (x/y) dy/dx)
Implicit differentiation of x^(cos(y)): d/dx (x^(cos(y))) = x^(cos(y)) (cos(y)/x - sin(y) ln(x) dy/dx)
Derivative of arcsin: d/dx (arcsin(z)) = 1/sqrt(1 - z^2) * dz/dx

Theorems

Chain Rule
Logarithmic Differentiation
Derivative of Inverse Trigonometric Functions

Suitable Grade Level

Undergraduate Calculus