Math Problem Statement

can you show detailed steps for all exercises?

Solution

Sure, I'll provide detailed steps for each exercise.

Exercise 1: Laplace Transforms

1. 1e2x2x\frac{1 - e^{-2x}}{2x}

To find the Laplace transform of 1e2x2x\frac{1 - e^{-2x}}{2x}, we use the linearity property of the Laplace transform.

L{1e2x2x}=12L{1x}12L{e2xx}\mathcal{L}\left\{\frac{1 - e^{-2x}}{2x}\right\} = \frac{1}{2} \mathcal{L}\left\{\frac{1}{x}\right\} - \frac{1}{2} \mathcal{L}\left\{\frac{e^{-2x}}{x}\right\}

However, note that 1x\frac{1}{x} and e2xx\frac{e^{-2x}}{x} are not standard forms that have direct Laplace transforms. Instead, consider rewriting the problem using properties of exponential functions and known transforms:

Using the fact that: L{eaxf(x)}=F(s+a)\mathcal{L}\{e^{-ax}f(x)\} = F(s + a)

Rewriting: L{1e2x2x}=12(L{1x}L{e2x1x})\mathcal{L}\left\{\frac{1 - e^{-2x}}{2x}\right\} = \frac{1}{2} \left( \mathcal{L}\left\{\frac{1}{x}\right\} - \mathcal{L}\left\{e^{-2x} \cdot \frac{1}{x}\right\} \right)

Given that the Laplace transform of 1x\frac{1}{x} does not exist, this expression might be approached through convolution theorem or residue theorem in complex analysis which is advanced. Typically in problems, standard pairs or further simplifications are used.

2. x0πextcostdtx \int_0^\pi e^{-x t} \cos t \, dt

Let's denote the integral by I(x)I(x):

I(x)=0πextcostdtI(x) = \int_0^\pi e^{-xt} \cos t \, dt

We apply integration by parts:

Let u=costu = \cos t and dv=extdtdv = e^{-xt} dt.

Then, du=sintdtdu = -\sin t dt and v=extxv = \frac{e^{-xt}}{-x}.

I(x)=costextx0π+0πsintextxdtI(x) = \left. \frac{\cos t \cdot e^{-xt}}{-x} \right|_0^\pi + \int_0^\pi \frac{\sin t \cdot e^{-xt}}{-x} dt

Simplify each part:

I(x)=(cosπexπxcos0e0x)+1x0πsintextdtI(x) = \left( \frac{\cos \pi \cdot e^{-x\pi}}{-x} - \frac{\cos 0 \cdot e^{-0}}{-x} \right) + \frac{1}{x} \int_0^\pi \sin t \cdot e^{-xt} dt

I(x)=(exπx1x)+1x0πsintextdtI(x) = \left( \frac{-e^{-x\pi}}{-x} - \frac{1}{-x} \right) + \frac{1}{x} \int_0^\pi \sin t \cdot e^{-xt} dt

Simplifying further:

I(x)=exπ1x+1x0πsintextdtI(x) = \frac{e^{-x\pi} - 1}{x} + \frac{1}{x} \int_0^\pi \sin t \cdot e^{-xt} dt

We need to solve 0πsintextdt\int_0^\pi \sin t \cdot e^{-xt} dt. Similarly, this involves integration by parts or lookup from integral tables.

3. ex0x(xt)2cos2tdte^{-x} \int_0^x (x - t)^2 \cos^2 t \, dt

This problem typically involves solving the integral first before applying the Laplace transform. Let’s denote the integral by J(x)J(x):

J(x)=0x(xt)2cos2tdtJ(x) = \int_0^x (x - t)^2 \cos^2 t \, dt

Using the trigonometric identity cos2t=1+cos2t2\cos^2 t = \frac{1 + \cos 2t}{2}:

J(x)=0x(xt)21+cos2t2dtJ(x) = \int_0^x (x - t)^2 \cdot \frac{1 + \cos 2t}{2} dt

Split the integral:

[ J(x) = \frac{1}{2} \int_0^x (

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Laplace Transforms
Integration by Parts
Trigonometric Identities

Formulas

Laplace transform properties
Integration by parts formula

Theorems

Convolution theorem
Residue theorem

Suitable Grade Level

Advanced Mathematics