Math Problem Statement

1. (a) Let X be uniformly distributed on (0,1). Find the density of Y = -2 log X. (b) Let X1, X2 be i.i.d. from the standard exponential distribution. Prove that Y1 = X1 + X2 and Y2 = X1 / (X1 + X2) are independent random variables.

Solution

(a) Let XX be uniformly distributed on (0,1)(0, 1). Find the density of Y=2logXY = -2 \log X.

Solution:

  1. Transformation Relationship: Given XUniform(0,1)X \sim \text{Uniform}(0, 1), the PDF of XX is:

    \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{otherwise}. \end{cases}$$ The transformation is $$Y = -2 \log X$$. Solving for $$X$$ in terms of $$Y$$: $$X = e^{-Y/2}.$$
  2. Finding the Jacobian: The derivative of X=eY/2X = e^{-Y/2} with respect to YY is: dXdY=12eY/2.\frac{dX}{dY} = -\frac{1}{2} e^{-Y/2}. The absolute value of the Jacobian is: dXdY=12eY/2.\left|\frac{dX}{dY}\right| = \frac{1}{2} e^{-Y/2}.

  3. Changing the PDF: For transformations, the PDF of YY is: fY(y)=fX(x)dXdY,where x=ey/2.f_Y(y) = f_X(x) \cdot \left|\frac{dX}{dY}\right|, \quad \text{where } x = e^{-y/2}.

    Substituting fX(x)=1f_X(x) = 1 (since 0<x<10 < x < 1) and dXdY=12ey/2\left|\frac{dX}{dY}\right| = \frac{1}{2} e^{-y/2}:

    \begin{cases} \frac{1}{2} e^{-y/2}, & y > 0, \\ 0, & \text{otherwise}. \end{cases}$$

Thus, YExponential(λ=1/2)Y \sim \text{Exponential}(\lambda = 1/2) with PDF: [ f_Y(y) = \frac{1}{2} e^{-y/

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Random Variables
Probability Density Functions
Transformations of Random Variables
Exponential Distribution

Formulas

PDF of Uniform(0,1): f_X(x) = 1 for 0 < x < 1
Transformation: Y = g(X) implies f_Y(y) = f_X(x) |dx/dy|
PDF of Exponential(λ): f_X(x) = λ e^{-λx}, x > 0

Theorems

Independence of Random Variables
Properties of Exponential Distribution
Transformation of Random Variables

Suitable Grade Level

Undergraduate - Probability and Statistics