Math Problem Statement

فرض کنید X و Y متغیرهای تصادفی مستقل با تابع چگالی احتمال یکسان f(x) هستند که f(x) = e^(-x) برای x > 0 و 0 در غیر این صورت. محاسبه کنید تابع چگالی احتمال توام برای U = X + Y و V = e^X.

Solution

The problem involves random variables XX and YY that are independent with an identical exponential probability distribution given by:

\begin{cases} e^{-x} & \text{if } x > 0, \\ 0 & \text{otherwise}. \end{cases}$$ We are tasked to compute the joint probability distribution of $$U = X + Y$$ and $$V = e^X$$. ### Steps to Solve: 1. **Determine the joint probability density function of $$X$$ and $$Y$$:** Since $$X$$ and $$Y$$ are independent, their joint density is: $$f_{X,Y}(x, y) = f_X(x) \cdot f_Y(y) = e^{-x} e^{-y}, \quad x, y > 0.$$ 2. **Transform the variables $$U = X + Y$$ and $$V = e^X$$:** Let: $$U = X + Y, \quad V = e^X \implies X = \ln(V), \quad Y = U - \ln(V).$$ The Jacobian of the transformation is: $$J = \begin{vmatrix} \frac{\partial X}{\partial U} & \frac{\partial X}{\partial V} \\ \frac{\partial Y}{\partial U} & \frac{\partial Y}{\partial V} \end{vmatrix} = \begin{vmatrix} 0 & \frac{1}{V} \\ 1 & -\frac{1}{V} \end{vmatrix} = \frac{1}{V}.$$ 3. **Substitute the densities and compute the joint PDF:** The joint density in terms of $$U$$ and $$V$$ is: $$f_{U,V}(u, v) = f_{X,Y}(x, y) \cdot \left| J \right| = f_{X,Y}(\ln(v), u - \ln(v)) \cdot \frac{1}{v}.$$ Substitute $$f_{X,Y}(x, y)$$ with the given exponential PDF: $$f_{U,V}(u, v) = e^{-\ln(v)} e^{-(u - \ln(v))} \cdot \frac{1}{v}, \quad u > \ln(v), v > 0.$$ Simplify $$e^{-\ln(v)} = \frac{1}{v}$$: $$f_{U,V}(u, v) = \frac{1}{v} \cdot e^{-u} \cdot \frac{1}{v} = \frac{e^{-u}}{v^2}, \quad u > \ln(v), v > 0.$$ Thus, the joint probability density function is: $$f_{U,V}(u, v) = \begin{cases} \frac{e^{-u}}{v^2}, & u > \ln(v), v > 0, \\ 0, & \text{otherwise}. \end{cases}$$ ### Do you need further clarifications or step-by-step verification? Here are related queries: 1. What is the marginal PDF of $$V$$? 2. How do we find the conditional PDF of $$U$$ given $$V = v$$? 3. Can you explain the physical intuition of this transformation? 4. How do the limits on $$u > \ln(v)$$ arise mathematically? 5. How is independence of $$X$$ and $$Y$$ used in this transformation? **Tip:** When transforming random variables, always compute the Jacobian and carefully identify valid ranges for the new variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability and Statistics
Transformation of Random Variables
Joint Probability Density Functions

Formulas

f(x) = e^(-x), x > 0
Joint PDF: f_{U,V}(u, v) = f_{X,Y}(x, y) × |Jacobian|
Jacobian determinant for transformation: |J| = 1/v

Theorems

Independence of Random Variables
Change of Variables Theorem for Joint Distributions

Suitable Grade Level

Undergraduate (Statistics/Mathematics)