Math Problem Statement

Solve

Solve

Solution

To solve this problem, we need to compute the probability density function (PDF) of Z=X+YZ = X + Y, given the independent random variables XX and YY with their respective PDFs:

fX(x)=5e5x,x>0f_X(x) = 5e^{-5x}, \quad x > 0 fY(y)=2e2y,y>0f_Y(y) = 2e^{-2y}, \quad y > 0

The PDF of ZZ, fZ(z)f_Z(z), can be determined using the convolution formula for independent random variables:

fZ(z)=fX(x)fY(zx)dxf_Z(z) = \int_{-\infty}^\infty f_X(x) f_Y(z - x) \, dx

Given X>0X > 0 and Y>0Y > 0, Z=X+YZ = X + Y will only have support for z>0z > 0. We will compute the convolution only over the valid range x>0x > 0 and zx>0z - x > 0, which implies 0<x<z0 < x < z. Thus, the limits of integration are adjusted accordingly:

fZ(z)=0zfX(x)fY(zx)dxf_Z(z) = \int_0^z f_X(x) f_Y(z - x) \, dx

Substitute the given PDFs:

fZ(z)=0z(5e5x)(2e2(zx))dxf_Z(z) = \int_0^z \left( 5e^{-5x} \right) \left( 2e^{-2(z - x)} \right) dx

Simplify the expression:

fZ(z)=0z10e5xe2z+2xdxf_Z(z) = \int_0^z 10 e^{-5x} e^{-2z + 2x} \, dx fZ(z)=10e2z0ze3xdxf_Z(z) = 10 e^{-2z} \int_0^z e^{-3x} \, dx

The integral of e3xe^{-3x} is:

e3xdx=13e3x\int e^{-3x} \, dx = -\frac{1}{3} e^{-3x}

Evaluate the integral over the limits 00 to zz:

0ze3xdx=[13e3x]0z=13e3z+13\int_0^z e^{-3x} \, dx = \left[ -\frac{1}{3} e^{-3x} \right]_0^z = -\frac{1}{3} e^{-3z} + \frac{1}{3}

Substitute this result into the expression for fZ(z)f_Z(z):

fZ(z)=10e2z(1313e3z)f_Z(z) = 10 e^{-2z} \left( \frac{1}{3} - \frac{1}{3} e^{-3z} \right) fZ(z)=103e2z(1e3z)f_Z(z) = \frac{10}{3} e^{-2z} \left( 1 - e^{-3z} \right)

Thus, the PDF of ZZ is:

fZ(z)=103e2z(1e3z),z>0f_Z(z) = \frac{10}{3} e^{-2z} \left( 1 - e^{-3z} \right), \quad z > 0

Final Answer:

fZ(z)=103e2z(1e3z),z>0f_Z(z) = \frac{10}{3} e^{-2z} \left( 1 - e^{-3z} \right), \quad z > 0


Would you like a step-by-step explanation of the convolution process or clarification on any part?

Related Questions:

  1. How does the convolution formula work for dependent random variables?
  2. What happens to the PDF if XX and YY are not independent?
  3. How do the exponential distributions affect the shape of the resulting PDF?
  4. What is the mean and variance of Z=X+YZ = X + Y?
  5. Can this method be extended to other sums of random variables?

Tip:

When solving convolution problems, always carefully consider the limits of integration based on the support of the random variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Convolution of PDFs
Exponential Distribution

Formulas

f_Z(z) = ∫_{-∞}^{∞} f_X(x) f_Y(z - x) dx
f_X(x) = 5e^{-5x}, x > 0
f_Y(y) = 2e^{-2y}, y > 0
f_Z(z) = 10 e^{-2z} ∫_0^z e^{-3x} dx

Theorems

Convolution Theorem for Independent Random Variables
Exponential Distribution Convolution

Suitable Grade Level

Undergraduate (College Level)