Math Problem Statement

Evaluate the definite integral \( \int_0^{\pi/12} \sin^3(6x) \, dx \).

Solution

To evaluate the integral

0π/12sin3(6x)dx,\int_0^{\pi/12} \sin^3(6x) \, dx,

we will use trigonometric identities and integration techniques.

Step 1: Simplify sin3(6x)\sin^3(6x)

Using the identity: sin3(u)=sin(u)(1cos2(u)),\sin^3(u) = \sin(u)(1 - \cos^2(u)), we rewrite: sin3(6x)=sin(6x)sin(6x)cos2(6x).\sin^3(6x) = \sin(6x) - \sin(6x)\cos^2(6x).

Step 2: Split the integral

0π/12sin3(6x)dx=0π/12sin(6x)dx0π/12sin(6x)cos2(6x)dx.\int_0^{\pi/12} \sin^3(6x) \, dx = \int_0^{\pi/12} \sin(6x) \, dx - \int_0^{\pi/12} \sin(6x)\cos^2(6x) \, dx.

Sub-Integral 1: sin(6x)dx\int \sin(6x) \, dx

The integral of sin(kx)\sin(kx) is: sin(kx)dx=1kcos(kx).\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx). So: 0π/12sin(6x)dx=16[cos(6x)]0π/12.\int_0^{\pi/12} \sin(6x) \, dx = -\frac{1}{6} [\cos(6x)]_0^{\pi/12}. Evaluate: cos(6π/12)=cos(π/2)=0,cos(60)=cos(0)=1.\cos(6 \cdot \pi/12) = \cos(\pi/2) = 0, \quad \cos(6 \cdot 0) = \cos(0) = 1. Thus: 0π/12sin(6x)dx=16(01)=16.\int_0^{\pi/12} \sin(6x) \, dx = -\frac{1}{6} (0 - 1) = \frac{1}{6}.

Sub-Integral 2: sin(6x)cos2(6x)dx\int \sin(6x)\cos^2(6x) \, dx

Use the substitution u=cos(6x)u = \cos(6x), so: dudx=6sin(6x)orsin(6x)dx=16du.\frac{du}{dx} = -6 \sin(6x) \quad \text{or} \quad \sin(6x) \, dx = -\frac{1}{6} du. The bounds for u=cos(6x)u = \cos(6x) change as follows:

  • When x=0x = 0: u=cos(60)=1u = \cos(6 \cdot 0) = 1,
  • When x=π/12x = \pi/12: u=cos(6π/12)=cos(π/2)=0u = \cos(6 \cdot \pi/12) = \cos(\pi/2) = 0.

The integral becomes: 0π/12sin(6x)cos2(6x)dx=1610u2du.\int_0^{\pi/12} \sin(6x)\cos^2(6x) \, dx = -\frac{1}{6} \int_1^0 u^2 \, du. Simplify: 1610u2du=1601u2du.-\frac{1}{6} \int_1^0 u^2 \, du = \frac{1}{6} \int_0^1 u^2 \, du. The integral of u2u^2 is: u2du=u33.\int u^2 \, du = \frac{u^3}{3}. Evaluate: 1601u2du=16[u33]01=1613(1303)=118.\frac{1}{6} \int_0^1 u^2 \, du = \frac{1}{6} \left[\frac{u^3}{3}\right]_0^1 = \frac{1}{6} \cdot \frac{1}{3} (1^3 - 0^3) = \frac{1}{18}.

Step 3: Combine results

0π/12sin3(6x)dx=16118.\int_0^{\pi/12} \sin^3(6x) \, dx = \frac{1}{6} - \frac{1}{18}. Simplify: 16=318,318118=218=19.\frac{1}{6} = \frac{3}{18}, \quad \frac{3}{18} - \frac{1}{18} = \frac{2}{18} = \frac{1}{9}.

Final Answer:

0π/12sin3(6x)dx=19.\int_0^{\pi/12} \sin^3(6x) \, dx = \frac{1}{9}.

Would you like a step-by-step explanation of any part? Here are related questions:

  1. What substitution techniques work best for trigonometric integrals?
  2. How can trigonometric identities simplify complex powers of sine or cosine?
  3. What is the process for changing integration bounds during substitution?
  4. How can the integral of sinn(x)\sin^n(x) be generalized?
  5. Why does symmetry often simplify definite integrals with trigonometric functions?

Tip: Always verify trigonometric integrals by differentiating the result to ensure

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric integration
Substitution method
Definite integrals

Formulas

Reduction of \( \sin^n(x) \): \( \sin^3(u) = \sin(u)(1 - \cos^2(u)) \)
Integration of \( \sin(kx) \): \( \int \sin(kx) dx = -\frac{1}{k} \cos(kx) + C \)
Substitution for \( u = \cos(kx) \)

Theorems

Trigonometric identity \( \sin^2(x) + \cos^2(x) = 1 \)

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus