Math Problem Statement

To compute the definite integral ∫from π/3, to pi/6)sin^3(3x)cos^4(3x)dx , we need to make the substitution u= Preview Change entry mode With this subtitution, we get that ∫( from π/3, to pi/6)sin^3(3x)cos^4(3x)dx=∫(from a to b)F(u)du , where a= Preview Change entry mode <b= Preview Change entry mode and F(u)= Preview Change entry mode Compute the integral that you have found above. ∫F(u)du= Preview Change entry mode +C Do not add the constant of integration because we have done it for you. Hence, ∫(from π/3 to pi/6)sin^3(3x)cos^4(3x)dx=

Solution

To compute the integral

π/3π/6sin3(3x)cos4(3x)dx,\int_{\pi/3}^{\pi/6} \sin^3(3x) \cos^4(3x) \, dx,

let us proceed step-by-step:


Step 1: Substitution

We use the substitution: u=cos(3x).u = \cos(3x).

From this substitution, the derivative is: du=3sin(3x)dxorsin(3x)dx=13du.du = -3\sin(3x) \, dx \quad \text{or} \quad \sin(3x) \, dx = -\frac{1}{3} du.


Step 2: Rewrite the limits of integration

When x=π/3x = \pi/3: u=cos(3π/3)=cos(π)=1.u = \cos(3 \cdot \pi/3) = \cos(\pi) = -1.

When x=π/6x = \pi/6: u=cos(3π/6)=cos(π/2)=0.u = \cos(3 \cdot \pi/6) = \cos(\pi/2) = 0.

Thus, the integral limits change from π/3π/6\pi/3 \to \pi/6 to u:10u: -1 \to 0.


Step 3: Rewrite the integrand

The integrand sin3(3x)cos4(3x)dx\sin^3(3x)\cos^4(3x)\,dx becomes: sin3(3x)cos4(3x)dx=sin(3x)(cos4(3x))sin2(3x)dx.\sin^3(3x)\cos^4(3x) \, dx = \sin(3x)(\cos^4(3x))\sin^2(3x) \, dx.

Using sin2(3x)=1cos2(3x)=1u2\sin^2(3x) = 1 - \cos^2(3x) = 1 - u^2 and substituting du=3sin(3x)dxdu = -3\sin(3x)\,dx, the integral becomes: π/3π/6sin3(3x)cos4(3x)dx=10u4(1u2)(13)du.\int_{\pi/3}^{\pi/6} \sin^3(3x)\cos^4(3x) \, dx = \int_{-1}^{0} u^4(1 - u^2)\left(-\frac{1}{3}\right) du.

Simplify: 10sin3(3x)cos4(3x)dx=1310u4(1u2)du.\int_{-1}^{0} \sin^3(3x)\cos^4(3x) \, dx = -\frac{1}{3} \int_{-1}^{0} u^4(1 - u^2) \, du.


Step 4: Expand and integrate

Expand u4(1u2)u^4(1 - u^2): u4(1u2)=u4u6.u^4(1 - u^2) = u^4 - u^6.

Thus, the integral becomes: 1310(u4u6)du=13[10u4du10u6du].-\frac{1}{3} \int_{-1}^{0} (u^4 - u^6) \, du = -\frac{1}{3} \left[ \int_{-1}^{0} u^4 \, du - \int_{-1}^{0} u^6 \, du \right].


Step 5: Evaluate each term

The formula for undu\int u^n \, du is: undu=un+1n+1.\int u^n \, du = \frac{u^{n+1}}{n+1}.

First term:

10u4du=[u55]10=055(1)55=0(15)=15.\int_{-1}^{0} u^4 \, du = \left[\frac{u^5}{5}\right]_{-1}^{0} = \frac{0^5}{5} - \frac{(-1)^5}{5} = 0 - \left(-\frac{1}{5}\right) = \frac{1}{5}.

Second term:

10u6du=[u77]10=077(1)77=0(17)=17.\int_{-1}^{0} u^6 \, du = \left[\frac{u^7}{7}\right]_{-1}^{0} = \frac{0^7}{7} - \frac{(-1)^7}{7} = 0 - \left(-\frac{1}{7}\right) = \frac{1}{7}.


Step 6: Combine results

The integral becomes: 13(1517).-\frac{1}{3} \left( \frac{1}{5} - \frac{1}{7} \right).

Simplify the terms inside the parentheses: 1517=735535=235.\frac{1}{5} - \frac{1}{7} = \frac{7}{35} - \frac{5}{35} = \frac{2}{35}.

Thus, the integral is: 13235=2105.-\frac{1}{3} \cdot \frac{2}{35} = -\frac{2}{105}.


Final Answer

π/3π/6sin3(3x)cos4(3x)dx=2105.\int_{\pi/3}^{\pi/6} \sin^3(3x) \cos^4(3x) \, dx = -\frac{2}{105}.


Would you like a breakdown of any specific step? 😊

Relative Questions

  1. What are the rules for changing integration limits during substitution?
  2. How is sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 used in trigonometric integrals?
  3. Why do we include a negative sign in the substitution du=3sin(3x)dxdu = -3\sin(3x)dx?
  4. What is the formula for definite integrals and its role in this problem?
  5. Can the integral be solved without substitution? How?

Tip

Always double-check your limits of integration when making substitutions to avoid sign errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integral
Substitution Method
Trigonometric Integrals

Formulas

∫ u^n du = u^(n+1) / (n+1)
sin^2(θ) + cos^2(θ) = 1

Theorems

Substitution method in definite integrals

Suitable Grade Level

Grades 11-12