Math Problem Statement

evaluate the indefinite integral of sin^6(x/3)cos(x/3)dx using substitution

Solution

To evaluate the indefinite integral of sin6(x3)cos(x3)dx\sin^6\left(\frac{x}{3}\right) \cos\left(\frac{x}{3}\right) \, dx using substitution, follow these steps:

Step 1: Choose the Substitution

Let: u=sin(x3)u = \sin\left(\frac{x}{3}\right) Then, differentiate uu with respect to xx: dudx=13cos(x3)\frac{du}{dx} = \frac{1}{3} \cos\left(\frac{x}{3}\right) Thus, du=13cos(x3)dxdu = \frac{1}{3} \cos\left(\frac{x}{3}\right) dx or equivalently, 3du=cos(x3)dx3 \, du = \cos\left(\frac{x}{3}\right) dx

Step 2: Substitute into the Integral

Substitute u=sin(x3)u = \sin\left(\frac{x}{3}\right) and cos(x3)dx=3du\cos\left(\frac{x}{3}\right) dx = 3 \, du into the integral: sin6(x3)cos(x3)dx=u63du\int \sin^6\left(\frac{x}{3}\right) \cos\left(\frac{x}{3}\right) \, dx = \int u^6 \cdot 3 \, du This simplifies to: 3u6du3 \int u^6 \, du

Step 3: Integrate

Now, integrate with respect to uu: 3u6du=3u77+C3 \int u^6 \, du = 3 \cdot \frac{u^7}{7} + C =37u7+C= \frac{3}{7} u^7 + C

Step 4: Substitute Back

Finally, substitute back u=sin(x3)u = \sin\left(\frac{x}{3}\right) to get the result in terms of xx: 37sin7(x3)+C\frac{3}{7} \sin^7\left(\frac{x}{3}\right) + C

So, the indefinite integral is: sin6(x3)cos(x3)dx=37sin7(x3)+C\int \sin^6\left(\frac{x}{3}\right) \cos\left(\frac{x}{3}\right) \, dx = \frac{3}{7} \sin^7\left(\frac{x}{3}\right) + C

Would you like further details or have any questions?

Related Questions:

  1. How do you evaluate indefinite integrals using substitution for more complex trigonometric expressions?
  2. What is the significance of the constant of integration in indefinite integrals?
  3. Can you explain the method of substitution for integrals with multiple trigonometric functions?
  4. How would the integral change if the exponent on sin(x/3)\sin(x/3) were different?
  5. What are some common mistakes to avoid when using substitution for integration?

Tip: Always check if the substitution simplifies the integral significantly before proceeding, as it can save time and reduce the risk of errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution

Formulas

Substitution rule for integration

Theorems

-

Suitable Grade Level

Advanced High School