Math Problem Statement

Use the cosine of a sum and cosine of a difference identities to find

cosine left parenthesis s plus t right parenthesiscos(s+t)

and

cosine left parenthesis s minus t right parenthesiscos(s−t).

sine s equals negative four fifthssins=−45

and

sine t equals StartFraction 12 Over 13 EndFractionsint=1213​,

s in quadrant

IIIIII

and t in quadrant Upper II

Question content area bottom

Part 1

cosine left parenthesis s plus t right parenthesiscos(s+t)equals=enter your response here

​(Simplify your​ answer, including any radicals. Use integers or fractions for any numbers in the​ expression.)

Solution

To find cos(s+t)\cos(s + t) and cos(st)\cos(s - t), we will use the cosine sum and difference identities.

The identities are as follows:

cos(s+t)=cos(s)cos(t)sin(s)sin(t)\cos(s + t) = \cos(s) \cos(t) - \sin(s) \sin(t) cos(st)=cos(s)cos(t)+sin(s)sin(t)\cos(s - t) = \cos(s) \cos(t) + \sin(s) \sin(t)

We are given:

  • sin(s)=45\sin(s) = -\frac{4}{5} with ss in Quadrant III
  • sin(t)=1213\sin(t) = \frac{12}{13} with tt in Quadrant II

Step 1: Find cos(s)\cos(s) and cos(t)\cos(t)

For cos(s)\cos(s):

Since ss is in Quadrant III, both sin(s)\sin(s) and cos(s)\cos(s) are negative.

Using the Pythagorean identity: sin2(s)+cos2(s)=1\sin^2(s) + \cos^2(s) = 1 (45)2+cos2(s)=1\left( -\frac{4}{5} \right)^2 + \cos^2(s) = 1 1625+cos2(s)=1\frac{16}{25} + \cos^2(s) = 1 cos2(s)=11625=925\cos^2(s) = 1 - \frac{16}{25} = \frac{9}{25} cos(s)=35\cos(s) = -\frac{3}{5}

For cos(t)\cos(t):

Since tt is in Quadrant II, sin(t)\sin(t) is positive and cos(t)\cos(t) is negative.

Using the Pythagorean identity: sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1 (1213)2+cos2(t)=1\left( \frac{12}{13} \right)^2 + \cos^2(t) = 1 144169+cos2(t)=1\frac{144}{169} + \cos^2(t) = 1 cos2(t)=1144169=25169\cos^2(t) = 1 - \frac{144}{169} = \frac{25}{169} cos(t)=513\cos(t) = -\frac{5}{13}

Step 2: Substitute into the Cosine Sum and Difference Identities

For cos(s+t)\cos(s + t):

cos(s+t)=cos(s)cos(t)sin(s)sin(t)\cos(s + t) = \cos(s) \cos(t) - \sin(s) \sin(t) Substitute the values: cos(s+t)=(35)(513)(45)(1213)\cos(s + t) = \left( -\frac{3}{5} \right) \left( -\frac{5}{13} \right) - \left( -\frac{4}{5} \right) \left( \frac{12}{13} \right) =1565+4865=6365= \frac{15}{65} + \frac{48}{65} = \frac{63}{65}

For cos(st)\cos(s - t):

cos(st)=cos(s)cos(t)+sin(s)sin(t)\cos(s - t) = \cos(s) \cos(t) + \sin(s) \sin(t) Substitute the values: cos(st)=(35)(513)+(45)(1213)\cos(s - t) = \left( -\frac{3}{5} \right) \left( -\frac{5}{13} \right) + \left( -\frac{4}{5} \right) \left( \frac{12}{13} \right) =15654865=3365= \frac{15}{65} - \frac{48}{65} = -\frac{33}{65}

Final Answers:

cos(s+t)=6365\cos(s + t) = \frac{63}{65} cos(st)=3365\cos(s - t) = -\frac{33}{65}

Would you like more details or further assistance?

Here are related questions for further exploration:

  1. How would these results change if ss and tt were in different quadrants?
  2. Can we solve for tan(s+t)\tan(s + t) using similar identities?
  3. What are the identities for sin(s+t)\sin(s + t) and sin(st)\sin(s - t)?
  4. How do the quadrant signs affect the result of trigonometric identities?
  5. How would we apply these identities if sin(s)\sin(s) and sin(t)\sin(t) were in decimal form?

Tip: Memorizing quadrant sign conventions for trigonometric functions helps solve problems quickly and accurately.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Cosine Sum and Difference Identities
Quadrant Analysis

Formulas

cos(s + t) = cos(s) * cos(t) - sin(s) * sin(t)
cos(s - t) = cos(s) * cos(t) + sin(s) * sin(t)
sin^2(x) + cos^2(x) = 1 (Pythagorean Identity)

Theorems

Trigonometric Identities

Suitable Grade Level

Grades 10-12