Math Problem Statement

use the given information to find (a) sin (s+t), (b) tan (s+t), and (c) the qudrant of s +t. cos s = 16/17 and cos t = 3/5, s and t in quadrant 1

Solution

Given the information:

  • coss=1617\cos s = \frac{16}{17}
  • cost=35\cos t = \frac{3}{5}
  • Both angles ss and tt are in the first quadrant, so sins>0\sin s > 0 and sint>0\sin t > 0.

Step 1: Find sins\sin s and sint\sin t

We use the Pythagorean identity:
sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

For ss:

sin2s+(1617)2=1\sin^2 s + \left(\frac{16}{17}\right)^2 = 1 sin2s+256289=1\sin^2 s + \frac{256}{289} = 1 sin2s=1256289=289256289=33289\sin^2 s = 1 - \frac{256}{289} = \frac{289 - 256}{289} = \frac{33}{289} sins=33289=3317\sin s = \sqrt{\frac{33}{289}} = \frac{\sqrt{33}}{17}

For tt:

sin2t+(35)2=1\sin^2 t + \left(\frac{3}{5}\right)^2 = 1 sin2t+925=1\sin^2 t + \frac{9}{25} = 1 sin2t=1925=25925=1625\sin^2 t = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} sint=1625=45\sin t = \sqrt{\frac{16}{25}} = \frac{4}{5}

Step 2: Find sin(s+t)\sin(s + t)

We use the sum of angles formula for sine: sin(s+t)=sinscost+cosssint\sin(s + t) = \sin s \cos t + \cos s \sin t

Substitute the known values: sin(s+t)=331735+161745\sin(s + t) = \frac{\sqrt{33}}{17} \cdot \frac{3}{5} + \frac{16}{17} \cdot \frac{4}{5} sin(s+t)=33385+6485\sin(s + t) = \frac{3\sqrt{33}}{85} + \frac{64}{85} sin(s+t)=333+6485\sin(s + t) = \frac{3\sqrt{33} + 64}{85}

Step 3: Find tan(s+t)\tan(s + t)

We use the sum of angles formula for tangent: tan(s+t)=tans+tant1tanstant\tan(s + t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}

First, find tans\tan s and tant\tan t: tans=sinscoss=33171617=3316\tan s = \frac{\sin s}{\cos s} = \frac{\frac{\sqrt{33}}{17}}{\frac{16}{17}} = \frac{\sqrt{33}}{16} tant=sintcost=4535=43\tan t = \frac{\sin t}{\cos t} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}

Now substitute into the formula for tan(s+t)\tan(s + t): tan(s+t)=3316+431331643\tan(s + t) = \frac{\frac{\sqrt{33}}{16} + \frac{4}{3}}{1 - \frac{\sqrt{33}}{16} \cdot \frac{4}{3}} Find a common denominator in the numerator and simplify: tan(s+t)=333+6448143348\tan(s + t) = \frac{\frac{3\sqrt{33} + 64}{48}}{1 - \frac{4\sqrt{33}}{48}}

Step 4: Determine the quadrant of s+ts + t

Since ss and tt are in the first quadrant, and the sum s+ts + t is less than 180180^\circ (as both are positive and less than 9090^\circ), the angle s+ts + t is in the first quadrant as well.

Final answers:

(a) sin(s+t)=333+6485\sin(s + t) = \frac{3\sqrt{33} + 64}{85}
(b) tan(s+t)=333+6448143348\tan(s + t) = \frac{\frac{3\sqrt{33} + 64}{48}}{1 - \frac{4\sqrt{33}}{48}}
(c) s+ts + t is in the first quadrant.

Would you like more details or explanations?

Here are 5 related questions to deepen your understanding:

  1. What is the exact value of cos(s+t)\cos(s + t)?
  2. How does knowing the quadrant help in determining signs of trigonometric functions?
  3. Can you find sin(2s)\sin(2s) using the double-angle formula?
  4. What would change if one of the angles were in a different quadrant?
  5. How do trigonometric identities simplify calculations in physics problems?

Tip: Always use the Pythagorean identity when you know either sin\sin or cos\cos to quickly find the other.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Addition Formulas
Quadrants

Formulas

sin(s + t) = sin s * cos t + cos s * sin t
tan(s + t) = (tan s + tan t) / (1 - tan s * tan t)
Pythagorean identity: sin^2θ + cos^2θ = 1

Theorems

Pythagorean Theorem
Angle Sum Identity for Sine and Tangent

Suitable Grade Level

Grades 10-12