Math Problem Statement

Find sin(2θ), cos(2θ), and tan(2θ) if sin(θ) = -2/5 and θ is in Quadrant III.

Solution

To solve this problem, we are given that:

sin(θ)=25\sin(\theta) = -\frac{2}{5} and that θ\theta is in Quadrant III. We need to find sin(2θ)\sin(2\theta), cos(2θ)\cos(2\theta), and tan(2θ)\tan(2\theta).

Step 1: Determine cos(θ)\cos(\theta)

Since sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1, we can find cos(θ)\cos(\theta) as follows:

sin2(θ)=(25)2=425\sin^2(\theta) = \left(-\frac{2}{5}\right)^2 = \frac{4}{25}

Substitute into the Pythagorean identity:

cos2(θ)=1sin2(θ)=1425=2125\cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \frac{4}{25} = \frac{21}{25}

Thus,

cos(θ)=2125=215\cos(\theta) = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5}

We take the negative square root because θ\theta is in Quadrant III, where both sine and cosine are negative.

Step 2: Find sin(2θ)\sin(2\theta)

Using the double-angle identity for sine:

sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2 \sin(\theta) \cos(\theta)

Substitute sin(θ)=25\sin(\theta) = -\frac{2}{5} and cos(θ)=215\cos(\theta) = -\frac{\sqrt{21}}{5}:

sin(2θ)=2(25)(215)=222125=42125\sin(2\theta) = 2 \cdot \left(-\frac{2}{5}\right) \cdot \left(-\frac{\sqrt{21}}{5}\right) = 2 \cdot \frac{2\sqrt{21}}{25} = \frac{4\sqrt{21}}{25}

Step 3: Find cos(2θ)\cos(2\theta)

Using the double-angle identity for cosine:

cos(2θ)=cos2(θ)sin2(θ)\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)

Substitute cos2(θ)=2125\cos^2(\theta) = \frac{21}{25} and sin2(θ)=425\sin^2(\theta) = \frac{4}{25}:

cos(2θ)=2125425=1725\cos(2\theta) = \frac{21}{25} - \frac{4}{25} = \frac{17}{25}

Step 4: Find tan(2θ)\tan(2\theta)

Using the double-angle identity for tangent:

tan(2θ)=sin(2θ)cos(2θ)\tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)}

Substitute sin(2θ)=42125\sin(2\theta) = \frac{4\sqrt{21}}{25} and cos(2θ)=1725\cos(2\theta) = \frac{17}{25}:

tan(2θ)=421251725=42117\tan(2\theta) = \frac{\frac{4\sqrt{21}}{25}}{\frac{17}{25}} = \frac{4\sqrt{21}}{17}

Summary of Results

[ \sin(2\theta

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Double Angle Identities
Quadrants

Formulas

sin(2θ) = 2 sin(θ) cos(θ)
cos(2θ) = cos^2(θ) - sin^2(θ)
tan(2θ) = sin(2θ) / cos(2θ)
Pythagorean identity: sin^2(θ) + cos^2(θ) = 1

Theorems

Pythagorean Identity
Double Angle Identities

Suitable Grade Level

Grade 10-12