Math Problem Statement

Use a​ half-angle formula to find the exact value of the following expression. cosine 15 degrees Question content area bottom Part 1 Determine an appropriate​ half-angle formula for cosine and the measure of the angle. Select the correct choice below and fill in the answer box to complete your choice. ​(Type an integer or a​ decimal.) A.cosine 15 degrees equals StartRoot StartFraction 1 plus cosine nothing degrees Over 2 EndFraction EndRoot cosine 15 degreesequalsStartRoot StartFraction 1 plus cosine nothing degrees Over 2 EndFraction EndRoot    B.cosine 15 degrees equals negative StartRoot StartFraction 1 minus cosine nothing degrees Over 2 EndFraction EndRoot cosine 15 degreesequalsnegative StartRoot StartFraction 1 minus cosine nothing degrees Over 2 EndFraction EndRoot    C.cosine 15 degrees equals negative StartRoot StartFraction 1 plus cosine nothing degrees Over 2 EndFraction EndRoot cosine 15 degreesequalsnegative StartRoot StartFraction 1 plus cosine nothing degrees Over 2 EndFraction EndRoot    D.cosine 15 degrees equals StartRoot StartFraction 1 minus cosine nothing degrees Over 2 EndFraction EndRoot cosine 15 degreesequalsStartRoot StartFraction 1 minus cosine nothing degrees Over 2 EndFraction EndRoot    Part 2 cosine 15 degreesequals    enter your response here ​(Simplify your​ answer, including any radicals. Use integers or fractions for any numbers in the expression. Rationalize the​ denominator.)

Solution

To find the exact value of cos(15)\cos(15^\circ) using a half-angle formula, we can start by identifying the appropriate formula and angle.

Part 1: Determine the Half-Angle Formula

The half-angle formula for cosine is:

cos(θ2)=1+cos(θ)2\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos(\theta)}{2}}

To find cos(15)\cos(15^\circ), we can express 1515^\circ as half of 3030^\circ:

15=30215^\circ = \frac{30^\circ}{2}

Thus, we can use the half-angle formula with θ=30\theta = 30^\circ:

cos(15)=1+cos(30)2\cos(15^\circ) = \sqrt{\frac{1 + \cos(30^\circ)}{2}}

Part 2: Calculate cos(15)\cos(15^\circ)

Next, we find cos(30)\cos(30^\circ):

cos(30)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}

Now substitute this value back into the half-angle formula:

cos(15)=1+322\cos(15^\circ) = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}}

Simplifying the expression inside the square root:

  1. Combine the terms in the numerator:

1+32=22+32=2+321 + \frac{\sqrt{3}}{2} = \frac{2}{2} + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2}

  1. Now substitute back:

cos(15)=2+322=2+34=2+32\cos(15^\circ) = \sqrt{\frac{\frac{2 + \sqrt{3}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = \frac{\sqrt{2 + \sqrt{3}}}{2}

Thus, the exact value is:

cos(15)=2+32\cos(15^\circ) = \frac{\sqrt{2 + \sqrt{3}}}{2}

Summary

  • Half-Angle Formula: cos(15)=1+cos(30)2\cos(15^\circ) = \sqrt{\frac{1 + \cos(30^\circ)}{2}}
  • Exact Value: cos(15)=2+32\cos(15^\circ) = \frac{\sqrt{2 + \sqrt{3}}}{2}

Questions for Further Exploration

  1. What are the half-angle formulas for sine and tangent?
  2. How can you derive the value of cos(45)\cos(45^\circ) using a similar method?
  3. What other angles can be expressed using half-angle formulas?
  4. Can you explain why the cosine of an angle in the first quadrant is positive?
  5. How does the cosine of complementary angles relate to the sine of those angles?

Tip

When using half-angle formulas, ensure you know the cosine values of common angles (like 3030^\circ, 4545^\circ, and 6060^\circ) to simplify your calculations effectively.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Measures
Half-Angle Formulas

Formulas

cos(θ/2) = sqrt((1 + cos(θ)) / 2

Theorems

-

Suitable Grade Level

Grades 10-12