Math Problem Statement

sin 15 + cos 15

Solution

To solve the expression sin15+cos15\sin 15^\circ + \cos 15^\circ, let's compute the exact values for both sin15\sin 15^\circ and cos15\cos 15^\circ.

Step-by-Step Calculation

  1. Using the Half-Angle Formulas:

    To find sin15\sin 15^\circ and cos15\cos 15^\circ, note that 15=453015^\circ = 45^\circ - 30^\circ. However, another approach is using the half-angle formulas for trigonometric functions because:

    15=30215^\circ = \frac{30^\circ}{2}

    For a half-angle θ2\frac{\theta}{2}, we have:

    sinθ2=1cosθ2,cosθ2=1+cosθ2\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}, \quad \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}}

  2. Calculate sin15\sin 15^\circ and cos15\cos 15^\circ:

    Let's take θ=30\theta = 30^\circ:

    • cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}

    Now, apply the half-angle formulas:

    sin15=sin302=1cos302=1322=234=232\sin 15^\circ = \sin \frac{30^\circ}{2} = \sqrt{\frac{1 - \cos 30^\circ}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{2 - \sqrt{3}}}{2}

    cos15=cos302=1+cos302=1+322=2+34=2+32\cos 15^\circ = \cos \frac{30^\circ}{2} = \sqrt{\frac{1 + \cos 30^\circ}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 + \sqrt{3}}{4}} = \frac{\sqrt{2 + \sqrt{3}}}{2}

  3. Add sin15\sin 15^\circ and cos15\cos 15^\circ:

    Now we add these two expressions:

    sin15+cos15=232+2+32\sin 15^\circ + \cos 15^\circ = \frac{\sqrt{2 - \sqrt{3}}}{2} + \frac{\sqrt{2 + \sqrt{3}}}{2}

    Combine the fractions:

    sin15+cos15=23+2+32\sin 15^\circ + \cos 15^\circ = \frac{\sqrt{2 - \sqrt{3}} + \sqrt{2 + \sqrt{3}}}{2}

This is the simplified exact value for the expression sin15+cos15\sin 15^\circ + \cos 15^\circ.

Summary

sin15+cos15=23+2+32\sin 15^\circ + \cos 15^\circ = \frac{\sqrt{2 - \sqrt{3}} + \sqrt{2 + \sqrt{3}}}{2}

Would you like more details on this calculation or have any questions?

Follow-Up Questions

  1. What is the geometric interpretation of sin15\sin 15^\circ and cos15\cos 15^\circ on the unit circle?
  2. How can we use other trigonometric identities to verify sin15+cos15\sin 15^\circ + \cos 15^\circ?
  3. Can we express sin15+cos15\sin 15^\circ + \cos 15^\circ in terms of other angles?
  4. How would the calculation change for sin75+cos75\sin 75^\circ + \cos 75^\circ?
  5. What are other ways to derive the exact values of sin15\sin 15^\circ and cos15\cos 15^\circ using angle difference identities?

Tip

Remember that trigonometric identities can often simplify expressions and calculations involving angles!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Sum and Difference Identities
Half-Angle Formulas

Formulas

Half-angle formulas for sine and cosine

Theorems

-

Suitable Grade Level

High School