Math Problem Statement

What is the value of cos 15°?

Solution

To find cos15\cos 15^\circ, we can use the angle subtraction formula:

cos(ab)=cosacosb+sinasinb\cos(a - b) = \cos a \cos b + \sin a \sin b

For a=45a = 45^\circ and b=30b = 30^\circ:

cos45=22,sin45=22\cos 45^\circ = \frac{\sqrt{2}}{2}, \quad \sin 45^\circ = \frac{\sqrt{2}}{2} cos30=32,sin30=12\cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 30^\circ = \frac{1}{2}

Substituting these into the formula:

cos15=cos(4530)=(22)(32)+(22)(12)\cos 15^\circ = \cos(45^\circ - 30^\circ) = \left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)

=64+24= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}

=6+24= \frac{\sqrt{6} + \sqrt{2}}{4}

So the correct answer is A) 6+24\frac{\sqrt{6} + \sqrt{2}}{4}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Subtraction
Trigonometric Identities

Formulas

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
cos 45° = √2/2
sin 45° = √2/2
cos 30° = √3/2
sin 30° = 1/2

Theorems

Trigonometric Angle Subtraction Formula

Suitable Grade Level

Grades 9-12