Math Problem Statement

Find the exact value of cos 15° by using a sum or difference formula.

Solution

To find the exact value of cos15\cos 15^\circ using a sum or difference formula, we can proceed as follows:

Step 1: Identify the Formula

The angle 1515^\circ can be expressed as: 15=453015^\circ = 45^\circ - 30^\circ Thus, we can use the cosine difference formula: cos(ab)=cosacosb+sinasinb\cos (a - b) = \cos a \cos b + \sin a \sin b

Step 2: Substitute Known Values

Using a=45a = 45^\circ and b=30b = 30^\circ: cos15=cos45cos30+sin45sin30\cos 15^\circ = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ

We know:

  • cos45=22\cos 45^\circ = \frac{\sqrt{2}}{2}
  • cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2}
  • sin45=22\sin 45^\circ = \frac{\sqrt{2}}{2}
  • sin30=12\sin 30^\circ = \frac{1}{2}

Step 3: Substitute and Simplify

cos15=(22)(32)+(22)(12)\cos 15^\circ = \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right) =64+24= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} =6+24= \frac{\sqrt{6} + \sqrt{2}}{4}

Conclusion

The exact value of cos15\cos 15^\circ is: 624\frac{\sqrt{6} - \sqrt{2}}{4}

The answer you selected in the image is incorrect. The correct answer is 6+24\frac{\sqrt{6} + \sqrt{2}}{4}.

Would you like further details on this problem, or do you have any questions?

Here are some related questions to explore:

  1. How can you find the exact value of cos75\cos 75^\circ using a sum or difference formula?
  2. What is the exact value of sin15\sin 15^\circ using a similar approach?
  3. Can you derive the value of tan15\tan 15^\circ using sum or difference formulas?
  4. How would you calculate cos(30+45)\cos(30^\circ + 45^\circ) and does it lead to the same result?
  5. What are other ways to compute trigonometric values for non-standard angles like 1515^\circ and 7575^\circ?

Tip: Memorizing the values of common angles like 3030^\circ, 4545^\circ, and 6060^\circ can make it easier to use sum and difference formulas for angles like 1515^\circ and 7575^\circ.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Angle Sum and Difference Identities

Formulas

cos(a - b) = cos(a)cos(b) + sin(a)sin(b)

Theorems

Cosine Difference Formula

Suitable Grade Level

Grades 10-12