Math Problem Statement
nyatakan bilangan kompleks berikut ke dalam bentuk kutub dan gambarlah dalam bidang kompleks: z = -√6 - √2 i
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Complex Numbers
Polar Form of Complex Numbers
Coordinate Geometry in the Complex Plane
Formulas
Modulus: r = √(Re(z)^2 + Im(z)^2)
Argument: θ = arctan(Im(z)/Re(z))
Polar Form: z = r(cos θ + i sin θ)
Theorems
Pythagoras' Theorem (used to calculate modulus)
Properties of the Arctan Function
Relationship between Cartesian and Polar Coordinates
Suitable Grade Level
Grades 10-12
Related Recommendation
Convert Complex Number z = -√6 - √2i to Polar Form and Plot
Convert Complex Number z = -√6 - √2i to Polar Form with Graph
Convert Cartesian to Polar Form for Complex Number z = 2 - 2i
Converting Complex Number z = -2 + i to Polar Form
Converting Complex Number to Polar and Exponential Forms: Step-by-Step Solution