Math Problem Statement

Convert -232330 (base 6) to base 4.

Solution

To convert 2323306-232330_6 (base 6) to base 4, we will follow these steps:

Step 1: Convert from base 6 to base 10

The number 2323306-232330_6 in base 6 is expanded as follows:

2323306=(2×65+3×64+2×63+3×62+3×61+0×60)-232330_6 = -(2 \times 6^5 + 3 \times 6^4 + 2 \times 6^3 + 3 \times 6^2 + 3 \times 6^1 + 0 \times 6^0)

Now, let's calculate each term:

2×65=2×7776=155522 \times 6^5 = 2 \times 7776 = 15552 3×64=3×1296=38883 \times 6^4 = 3 \times 1296 = 3888 2×63=2×216=4322 \times 6^3 = 2 \times 216 = 432 3×62=3×36=1083 \times 6^2 = 3 \times 36 = 108 3×61=3×6=183 \times 6^1 = 3 \times 6 = 18 0×60=00 \times 6^0 = 0

Now, sum them up:

15552+3888+432+108+18=2000015552 + 3888 + 432 + 108 + 18 = 20000

Thus, 2323306=2000010-232330_6 = -20000_{10}.

Step 2: Convert from base 10 to base 4

Next, we need to convert 2000010-20000_{10} to base 4. We repeatedly divide by 4 and record the remainders:

20000÷4=5000 remainder 020000 \div 4 = 5000 \ \text{remainder} \ 0 5000÷4=1250 remainder 05000 \div 4 = 1250 \ \text{remainder} \ 0 1250÷4=312 remainder 21250 \div 4 = 312 \ \text{remainder} \ 2 312÷4=78 remainder 0312 \div 4 = 78 \ \text{remainder} \ 0 78÷4=19 remainder 278 \div 4 = 19 \ \text{remainder} \ 2 19÷4=4 remainder 319 \div 4 = 4 \ \text{remainder} \ 3 4÷4=1 remainder 04 \div 4 = 1 \ \text{remainder} \ 0 1÷4=0 remainder 11 \div 4 = 0 \ \text{remainder} \ 1

Reading the remainders from bottom to top, 2000010-20000_{10} in base 4 is 1032032004103203200_4.

Final Answer:

2323306=1032032004-232330_6 = -103203200_4

Would you like more details or have any questions?

Here are 5 related questions for further practice:

  1. Convert 2345206234520_6 to base 4.
  2. Convert 453216-45321_6 to base 8.
  3. Convert 1011012101101_2 to base 6.
  4. Convert 3210324321032_4 to base 6.
  5. Convert 321106-32110_6 to base 5.

Tip: When converting between bases, it is often easier to first convert to base 10, then to the desired base.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Base Conversion
Number Systems

Formulas

Base 6 to Base 10: n_6 = (d_k * 6^k + d_(k-1) * 6^(k-1) + ... + d_1 * 6^1 + d_0 * 6^0)
Base 10 to Base 4: Repeated division by 4 to obtain remainders

Theorems

Positional Notation in Number Systems

Suitable Grade Level

Grades 9-12