Math Problem Statement

Subtract 211 base 4 from 1230 base 4 (2 marks)

Solution

To subtract 2114211_4 from 123041230_4, follow these steps:

Step 1: Convert from Base 4 to Decimal

Convert each number to base 10.

Convert 123041230_4 to Decimal:

1×43+2×42+3×41+0×401 \times 4^3 + 2 \times 4^2 + 3 \times 4^1 + 0 \times 4^0 =1×64+2×16+3×4+0×1= 1 \times 64 + 2 \times 16 + 3 \times 4 + 0 \times 1 =64+32+12+0=10810= 64 + 32 + 12 + 0 = 108_{10}

Convert 2114211_4 to Decimal:

2×42+1×41+1×402 \times 4^2 + 1 \times 4^1 + 1 \times 4^0 =2×16+1×4+1×1= 2 \times 16 + 1 \times 4 + 1 \times 1 =32+4+1=3710= 32 + 4 + 1 = 37_{10}

Step 2: Perform Subtraction in Decimal

10837=7110108 - 37 = 71_{10}

Step 3: Convert Result Back to Base 4

Divide 71 by 4 and record remainders:

71÷4=17 remainder 371 \div 4 = 17 \text{ remainder } 3 17÷4=4 remainder 117 \div 4 = 4 \text{ remainder } 1 4÷4=1 remainder 04 \div 4 = 1 \text{ remainder } 0 1÷4=0 remainder 11 \div 4 = 0 \text{ remainder } 1

Reading the remainders from bottom to top, 7110=1013471_{10} = 1013_4.

Final Answer:

10134\mathbf{1013_4}

Would you like a detailed breakdown of any step?


Related Questions:

  1. Convert 3214321_4 to base 10.
  2. Add 1324132_4 and 2104210_4 in base 4.
  3. Convert 711071_{10} to base 5.
  4. Subtract 102341023_4 from 320143201_4.
  5. Explain why base 4 uses only digits 0-3.

Tip: When converting to base 4, keep dividing by 4 and record remainders!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Systems
Base Conversions
Subtraction in Different Bases

Formulas

Decimal Conversion: (d_n * b^n) + (d_{n-1} * b^{n-1}) + ... + (d_1 * b^1) + (d_0 * b^0)
Base Conversion: Repeated division by base with remainder collection

Theorems

Positional Notation Theorem

Suitable Grade Level

Grades 7-10