Math Problem Statement

q_{0} = 1 , q_{1} = x , q_{2} = x ^ 2 - 1/3 where {q_{i}} is the set of orthogonal monomials in the interval [-1,1] with respect to the standard square norm of the differentiable func- tions. Compute q_{3} and then express x ^ 3 as a q_{0} to q_{3}

Solution

Given the set of orthogonal polynomials {qi}\{q_i\} defined on the interval [1,1][-1,1] with respect to the standard square norm, the polynomials q0,q1,q2q_0, q_1, q_2 are already provided:

q0=1,q1=x,q2=x213q_0 = 1, \quad q_1 = x, \quad q_2 = x^2 - \frac{1}{3}

We need to compute q3q_3 and then express x3x^3 as a linear combination of q0,q1,q2,q3q_0, q_1, q_2, q_3.

Step 1: Compute q3q_3

Orthogonal polynomials q3(x)q_3(x) will have the general form:

q3(x)=x3+a2x2+a1x+a0q_3(x) = x^3 + a_2 x^2 + a_1 x + a_0

We require q3(x)q_3(x) to be orthogonal to q0(x),q1(x),q2(x)q_0(x), q_1(x), q_2(x) over the interval [1,1][-1, 1].

Orthogonality Conditions:

  1. 11q3(x)q0(x)dx=0\int_{-1}^{1} q_3(x) \cdot q_0(x) \, dx = 0
  2. 11q3(x)q1(x)dx=0\int_{-1}^{1} q_3(x) \cdot q_1(x) \, dx = 0
  3. 11q3(x)q2(x)dx=0\int_{-1}^{1} q_3(x) \cdot q_2(x) \, dx = 0

Given these, we calculate the coefficients a2,a1,a0a_2, a_1, a_0.

Orthogonality with q0(x)=1q_0(x) = 1:

11(x3+a2x2+a1x+a0)dx=0\int_{-1}^{1} \left( x^3 + a_2 x^2 + a_1 x + a_0 \right) dx = 0

Calculating the integrals:

11x3dx=0,11x2dx=23,11xdx=0,11dx=2\int_{-1}^{1} x^3 \, dx = 0, \quad \int_{-1}^{1} x^2 \, dx = \frac{2}{3}, \quad \int_{-1}^{1} x \, dx = 0, \quad \int_{-1}^{1} dx = 2

Thus:

a02+a223=0    a0+a23=0    a0=a23a_0 \cdot 2 + a_2 \cdot \frac{2}{3} = 0 \implies a_0 + \frac{a_2}{3} = 0 \implies a_0 = -\frac{a_2}{3}

Orthogonality with q1(x)=xq_1(x) = x:

11(x3+a2x2+a1x+a0)xdx=0\int_{-1}^{1} \left( x^3 + a_2 x^2 + a_1 x + a_0 \right) x \, dx = 0

This simplifies to:

11x4dx+a211x3dx+a111x2dx+a011xdx=0\int_{-1}^{1} x^4 \, dx + a_2 \int_{-1}^{1} x^3 \, dx + a_1 \int_{-1}^{1} x^2 \, dx + a_0 \int_{-1}^{1} x \, dx = 0

Given 11x4dx=25\int_{-1}^{1} x^4 \, dx = \frac{2}{5}:

25+a123=0    a1=35\frac{2}{5} + a_1 \cdot \frac{2}{3} = 0 \implies a_1 = -\frac{3}{5}

Orthogonality with q2(x)=x213q_2(x) = x^2 - \frac{1}{3}:

11(x3+a2x2+a1x+a0)(x213)dx=0\int_{-1}^{1} \left( x^3 + a_2 x^2 + a_1 x + a_0 \right) \left( x^2 - \frac{1}{3} \right) dx = 0

This expands to:

11(x5+a2x4+a1x3+a0x213x3a23x2a13xa03)dx=0\int_{-1}^{1} \left( x^5 + a_2 x^4 + a_1 x^3 + a_0 x^2 - \frac{1}{3}x^3 - \frac{a_2}{3}x^2 - \frac{a_1}{3}x - \frac{a_0}{3} \right) dx = 0

Matching coefficients and solving, we get a2=0a_2 = 0, a1=35a_1 = -\frac{3}{5}, a0=0a_0 = 0.

Thus:

q3(x)=x335xq_3(x) = x^3 - \frac{3}{5}x

Step 2: Express x3x^3 in terms of q0,q1,q2,q3q_0, q_1, q_2, q_3

We need to find constants c0,c1,c2,c3c_0, c_1, c_2, c_3 such that:

x3=c0q0(x)+c1q1(x)+c2q2(x)+c3q3(x)x^3 = c_0 q_0(x) + c_1 q_1(x) + c_2 q_2(x) + c_3 q_3(x)

Using the known polynomials:

x3=c0(1)+c1(x)+c2(x213)+c3(x335x)x^3 = c_0 (1) + c_1 (x) + c_2 \left( x^2 - \frac{1}{3} \right) + c_3 \left( x^3 - \frac{3}{5} x \right)

Comparing coefficients, we find:

c3=1,c135c3=0    c1=35,c2=0,c0=0c_3 = 1, \quad c_1 - \frac{3}{5}c_3 = 0 \implies c_1 = \frac{3}{5}, \quad c_2 = 0, \quad c_0 = 0

So:

x3=q3(x)+35q1(x)x^3 = q_3(x) + \frac{3}{5}q_1(x)

Final Expression:

x3=q3(x)+35q1(x)x^3 = q_3(x) + \frac{3}{5}q_1(x)

Would you like more details on the calculations? Here are 5 related questions to consider:

  1. What are the properties of orthogonal polynomials in general?
  2. How can we derive higher-order orthogonal polynomials for different intervals?
  3. What role does the weight function play in orthogonal polynomials?
  4. Can you explain the Gram-Schmidt process in the context of generating orthogonal polynomials?
  5. How does orthogonality influence the convergence of polynomial approximations?

Tip: Orthogonal polynomials are useful in numerical analysis for approximating functions, especially in quadrature methods.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Orthogonal Polynomials
Integral Calculus
Linear Algebra

Formulas

Orthogonality conditions for polynomials

Theorems

-

Suitable Grade Level

Advanced Undergraduate