Math Problem Statement

Given q_{0} = 1 q_{1} = x q_{2} = x ^ 2 - 1/3 where {q_{i}} is the set of orthogonal monomials in the interval [-1,1] with respect to the standard square norm of the differentiable func- tions. Compute q 3. and then express x ^ 3 as a linear combination of q_{0} to q_{3}

Solution

The problem involves finding the next orthogonal polynomial q3(x)q_3(x) given the first three orthogonal polynomials q0(x)=1q_0(x) = 1, q1(x)=xq_1(x) = x, and q2(x)=x213q_2(x) = x^2 - \frac{1}{3}. We will use the Gram-Schmidt process to ensure the orthogonality of the polynomials over the interval [1,1][-1, 1] with respect to the standard square norm:

f,g=11f(x)g(x)dx\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) \, dx

Step 1: Find q3(x)q_3(x)

We assume q3(x)q_3(x) is a linear combination of monomials up to x3x^3 because the degree of q3(x)q_3(x) should be 3. Hence, let:

q3(x)=x3+Ax2+Bx+Cq_3(x) = x^3 + A x^2 + B x + C

To ensure orthogonality, q3(x)q_3(x) must satisfy:

q3,q0=0,q3,q1=0,q3,q2=0\langle q_3, q_0 \rangle = 0, \quad \langle q_3, q_1 \rangle = 0, \quad \langle q_3, q_2 \rangle = 0

Orthogonality with q0(x)q_0(x):

q3,q0=11(x3+Ax2+Bx+C)1dx=11(x3+Ax2+Bx+C)dx\langle q_3, q_0 \rangle = \int_{-1}^{1} (x^3 + A x^2 + B x + C) \cdot 1 \, dx = \int_{-1}^{1} (x^3 + A x^2 + B x + C) \, dx

[ = \left[ \frac{x^4}{4} \right]{-1}^{1} + A \left[ \frac{x^3}{3} \right]{-1}^{1} + B \left[ \frac{x^2}{2} \right]{-1}^{1} + C \left[ x \right]{-1}^{1} ]

Since all odd powers of xx vanish when integrated over [1,1][-1, 1], we get:

q3,q0=0+0+2B12+0=B\langle q_3, q_0 \rangle = 0 + 0 + 2B \cdot \frac{1}{2} + 0 = B

Thus, B=0B = 0.

Orthogonality with q1(x)q_1(x):

q3,q1=11(x3+Ax2+C)xdx=11(x4+Ax3+Cx)dx\langle q_3, q_1 \rangle = \int_{-1}^{1} (x^3 + A x^2 + C) \cdot x \, dx = \int_{-1}^{1} (x^4 + A x^3 + C x) \, dx

[ = \left[ \frac{x^5}{5} \right]{-1}^{1} + A \left[ \frac{x^4}{4} \right]{-1}^{1} + C \left[ \frac{x^2}{2} \right]_{-1}^{1} ]

Again, odd powers vanish, and we are left with:

q3,q1=0+A24+0=A2\langle q_3, q_1 \rangle = 0 + A \cdot \frac{2}{4} + 0 = \frac{A}{2}

Thus, A=0A = 0.

Orthogonality with q2(x)q_2(x):

q2(x)=x213q_2(x) = x^2 - \frac{1}{3} q3,q2=11(x3+C)(x213)dx=11(x513x3+Cx2C3)dx\langle q_3, q_2 \rangle = \int_{-1}^{1} (x^3 + C) \cdot (x^2 - \frac{1}{3}) \, dx = \int_{-1}^{1} (x^5 - \frac{1}{3} x^3 + Cx^2 - \frac{C}{3}) \, dx

This simplifies to:

q3,q2=0+C320=2C3\langle q_3, q_2 \rangle = 0 + \frac{C}{3} \cdot 2 - 0 = \frac{2C}{3}

Thus, C=0C = 0.

Conclusion for q3(x)q_3(x):

Therefore, q3(x)=x3q_3(x) = x^3, but we need to normalize it to ensure it satisfies the orthogonality conditions correctly. Let’s calculate the norm of x3x^3:

q32=x3,x3=11x6dx=[x77]11=27\| q_3 \|^2 = \langle x^3, x^3 \rangle = \int_{-1}^{1} x^6 \, dx = \left[ \frac{x^7}{7} \right]_{-1}^{1} = \frac{2}{7}

Thus, the normalized polynomial is:

q3(x)=72x3q_3(x) = \sqrt{\frac{7}{2}} x^3

Step 2: Express x3x^3 as a linear combination of q0,q1,q2,q3q_0, q_1, q_2, q_3

We can now express x3x^3 as a linear combination of the orthogonal polynomials:

x3=c0q0+c1q1+c2q2+c3q3x^3 = c_0 q_0 + c_1 q_1 + c_2 q_2 + c_3 q_3

Where q0=1q_0 = 1, q1=xq_1 = x, q2=x213q_2 = x^2 - \frac{1}{3}, and q3=72x3q_3 = \sqrt{\frac{7}{2}} x^3.

We now need to compute the coefficients c0,c1,c2,c3c_0, c_1, c_2, c_3 by projecting x3x^3 onto each of the polynomials.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Orthogonal Polynomials
Gram-Schmidt Process
Linear Algebra
Integration

Formulas

Inner product of functions: ⟨f, g⟩ = ∫ f(x) g(x) dx over [-1, 1]
Gram-Schmidt orthogonalization
q_3(x) = x^3 + A x^2 + B x + C (assumed form for the third polynomial)

Theorems

Gram-Schmidt Orthogonalization

Suitable Grade Level

College-level or advanced high school (Grades 11-12)