Math Problem Statement
Let a linear map $T:R^2 -> R^3$ defined by $T\begin{pmatrix}2\1\end{pmatrix}=\begin{pmatrix}2\3\-3\end{pmatrix}$, $T\begin{pmatrix}1\2\end{pmatrix}=\begin{pmatrix}-2\4\0\end{pmatrix}$. Then $T\begin{pmatrix}1\-4\end{pmatrix}$ is equal to
a. $\begin{pmatrix}{r}0\4\end{pmatrix}$ b. $\begin{pmatrix}{r}0\4\end{pmatrix}$ c. $\begin{pmatrix}{r}0\4\end{pmatrix}$ d. $\begin{pmatrix}{r}2\0\2\end{pmatrix}$ e. $\begin{pmatrix}{r}2\0\2\end{pmatrix}$
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Algebra
Linear Transformations
Systems of Linear Equations
Formulas
-
Theorems
-
Suitable Grade Level
Undergraduate Level
Related Recommendation
Linear Transformation of Vectors in R3 to R2 using Basis Vectors
Compute Linear Transformation T of Vectors in R^2 and R^3
Linear Transformation T: Conditions for Linearity Explained
Linear Transformation of Vector (9, 0) Using Matrix Multiplication
Geometric Interpretation of Linear Combinations in R^3