Math Problem Statement

Given matrices A = [[2, 4], [3, 9]] and B = [[-3, -9], [-2, -4]], compute 2A - B.

Solution

To solve the problem 2AB2A - B, we first calculate 2A2A and then subtract BB from it.

Given: A=(2439),B=(3924)A = \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}

Step 1: Calculate 2A2A

2A=2(2439)=(48618)2A = 2 \cdot \begin{pmatrix} 2 & 4 \\ 3 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix}

Step 2: Subtract BB from 2A2A

2AB=(48618)(3924)2A - B = \begin{pmatrix} 4 & 8 \\ 6 & 18 \end{pmatrix} - \begin{pmatrix} -3 & -9 \\ -2 & -4 \end{pmatrix}

Subtract element-wise: 2AB=(4(3)8(9)6(2)18(4))=(717822)2A - B = \begin{pmatrix} 4 - (-3) & 8 - (-9) \\ 6 - (-2) & 18 - (-4) \end{pmatrix} = \begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}

Final Answer:

2AB=(717822)2A - B = \begin{pmatrix} 7 & 17 \\ 8 & 22 \end{pmatrix}

Would you like further explanations or any additional calculations?

Here are 5 related questions to explore further:

  1. What is the determinant of the resulting matrix 2AB2A - B?
  2. How would the result change if AA were a 3x3 matrix?
  3. What would happen if you calculated A2B2A^2 - B^2 instead?
  4. How can matrix subtraction be represented geometrically?
  5. What are the eigenvalues of 2AB2A - B, if any?

Tip: When working with matrices, ensure all operations (addition, subtraction, scalar multiplication) are element-wise unless specified otherwise!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Scalar Multiplication
Matrix Subtraction

Formulas

2A = 2 * A
2A - B = [[a11, a12], [a21, a22]] - [[b11, b12], [b21, b22]]

Theorems

-

Suitable Grade Level

Grades 9-12