Math Problem Statement

Ratkaise arvot integroimalla

Laske oheinen palkin jakaantuneen kuormituksen resultantti ja sen sijainti x-akselin suunnassa, kun välillä 0 < x < a jakaantunut kuorma (N/m) on funktion f(x) ja välillä a < x < (a+b) funktion g(x) mukainen. Kuormitusfunktion f(x) parametrit ovat A = 0, B = 150, C = 0, D = -20, E = 25, F = 0, G = 0 ja kuormitus g(x) = 5047.0 N/m. Palkin mitat ovat a = 6 m ja b = 5 m.

Solution

The task requires calculating the resultant force and its location along the x-axis for a beam with a distributed load. The load distribution is described by two functions:

  1. f(x)f(x) on the interval 0<x<a0 < x < a
  2. g(x)g(x) on the interval a<x<a+ba < x < a + b

The functions provided are:

  • f(x)=A+Bx1/2+Cx+Dx2+Ex3+FeGxf(x) = A + Bx^{1/2} + Cx + Dx^2 + Ex^3 + Fe^{Gx}, where the parameters are A=0A = 0, B=150B = 150, C=0C = 0, D=20D = -20, E=25E = 25, F=0F = 0, and G=0G = 0. This simplifies to f(x)=150x1/220x2+25x3f(x) = 150x^{1/2} - 20x^2 + 25x^3.
  • The constant load g(x)=5047N/mg(x) = 5047 \, \text{N/m} over the interval a<x<a+ba < x < a + b.

The beam dimensions are a=6ma = 6 \, \text{m} and b=5mb = 5 \, \text{m}.

Step 1: Resultant force calculation

The resultant force is found by integrating the load functions over their respective intervals:

  1. For f(x)f(x) on 0<x<a0 < x < a:

    R1=0af(x)dx=06(150x1/220x2+25x3)dxR_1 = \int_0^a f(x) \, dx = \int_0^6 \left( 150x^{1/2} - 20x^2 + 25x^3 \right) dx

  2. For g(x)g(x) on a<x<a+ba < x < a + b:

    R2=aa+bg(x)dx=6115047dxR_2 = \int_a^{a+b} g(x) \, dx = \int_6^{11} 5047 \, dx

The total resultant force RR is:

R=R1+R2R = R_1 + R_2

Step 2: Location of the resultant force

To find the location of the resultant force, we compute the first moment of area (the moment of the distributed load about the origin):

xR=0axf(x)dx+aa+bxg(x)dxRx_R = \frac{\int_0^a x f(x) \, dx + \int_a^{a+b} x g(x) \, dx}{R}

Let's solve these integrals step by step. I'll proceed with the calculations now.The resultant force calculations are as follows:

  • R1=6006+6660NR_1 = 600\sqrt{6} + 6660 \, \text{N} (from the function f(x)f(x) over the interval 0<x<60 < x < 6).
  • R2=25235NR_2 = 25235 \, \text{N} (from the constant load g(x)=5047N/mg(x) = 5047 \, \text{N/m} over the interval 6<x<116 < x < 11).

Therefore, the total resultant force is:

R=6006+31895NR = 600\sqrt{6} + 31895 \, \text{N}

This is the magnitude of the resultant force. Next, let's calculate the location of the resultant force.The first moments of area are:

  • For f(x)f(x): 21606+32400Nm2160\sqrt{6} + 32400 \, \text{Nm}
  • For g(x)g(x): 4289952Nm\frac{428995}{2} \, \text{Nm}

Thus, the location of the resultant force xRx_R is given by:

xR=21606+49379526006+31895x_R = \frac{2160\sqrt{6} + \frac{493795}{2}}{600\sqrt{6} + 31895}

This is the exact expression for the location. Would you like to proceed with the numerical approximation for the force magnitude and location?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Statically Determinate Beams
Moment of Inertia

Formulas

f(x) = A + Bx^{1/2} + Cx + Dx^2 + Ex^3 + Fe^{Gx}
g(x) = 5047 N/m
R = ∫ f(x) dx over [0, a] + ∫ g(x) dx over [a, a+b]
x_R = (∫ x f(x) dx over [0, a] + ∫ x g(x) dx over [a, a+b]) / R

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate level (Engineering or Physics students)