Math Problem Statement

Suppose z is a complex number satisfying z−1/z=3+5i . Find the length (or modulus) of z+1/z . Express your solution in closed form.

Solution

To solve the problem, we start with the equation involving the complex number zz:

z1z=3+5iz - \frac{1}{z} = 3 + 5i

We need to find the modulus of z+1zz + \frac{1}{z}.

Step 1: Express zz in Polar Form

Let z=reiθz = re^{i\theta}, where r=zr = |z| is the modulus of zz and θ\theta is the argument of zz.

Then, the reciprocal of zz is:

1z=1reiθ=1reiθ\frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}

Substitute these into the given equation:

reiθ1reiθ=3+5ire^{i\theta} - \frac{1}{r}e^{-i\theta} = 3 + 5i

Step 2: Separate Real and Imaginary Parts

Rewrite the equation using Euler's formula eiθ=cosθ+isinθe^{i\theta} = \cos\theta + i\sin\theta:

r(cosθ+isinθ)1r(cos(θ)+isin(θ))=3+5ir(\cos\theta + i\sin\theta) - \frac{1}{r}(\cos(-\theta) + i\sin(-\theta)) = 3 + 5i

Since cos(θ)=cosθ\cos(-\theta) = \cos\theta and sin(θ)=sinθ\sin(-\theta) = -\sin\theta, this becomes:

r(cosθ+isinθ)1r(cosθisinθ)=3+5ir(\cos\theta + i\sin\theta) - \frac{1}{r}(\cos\theta - i\sin\theta) = 3 + 5i

Separate real and imaginary parts:

(r1r)cosθ+i(r+1r)sinθ=3+5i\left(r - \frac{1}{r}\right)\cos\theta + i\left(r + \frac{1}{r}\right)\sin\theta = 3 + 5i

From here, we can equate the real and imaginary parts:

rcosθ1rcosθ=3(1)r\cos\theta - \frac{1}{r}\cos\theta = 3 \quad \text{(1)} rsinθ+1rsinθ=5(2)r\sin\theta + \frac{1}{r}\sin\theta = 5 \quad \text{(2)}

Step 3: Solve for rr and θ\theta

Multiply equation (1) by rr and equation (2) by rr to get:

r2cosθcosθ=3r(3)r^2\cos\theta - \cos\theta = 3r \quad \text{(3)} r2sinθ+sinθ=5r(4)r^2\sin\theta + \sin\theta = 5r \quad \text{(4)}

Divide equation (4) by equation (3) to solve for tanθ\tan\theta:

r2sinθ+sinθr2cosθcosθ=5r3r\frac{r^2\sin\theta + \sin\theta}{r^2\cos\theta - \cos\theta} = \frac{5r}{3r}

Simplify to get tanθ\tan\theta:

tanθ=53\tan\theta = \frac{5}{3}

Step 4: Express z+1zz + \frac{1}{z} and Compute Its Modulus

Now, compute z+1zz + \frac{1}{z}:

z+1z=reiθ+1reiθz + \frac{1}{z} = re^{i\theta} + \frac{1}{r}e^{-i\theta}

Using Euler's formula again:

z+1z=r(cosθ+isinθ)+1r(cosθisinθ)z + \frac{1}{z} = r(\cos\theta + i\sin\theta) + \frac{1}{r}(\cos\theta - i\sin\theta)

Combine like terms:

z+1z=(r+1r)cosθ+i(r1r)sinθz + \frac{1}{z} = \left(r + \frac{1}{r}\right)\cos\theta + i\left(r - \frac{1}{r}\right)\sin\theta

The modulus of z+1zz + \frac{1}{z} is:

z+1z=((r+1r)cosθ)2+((r1r)sinθ)2\left|z + \frac{1}{z}\right| = \sqrt{\left(\left(r + \frac{1}{r}\right)\cos\theta\right)^2 + \left(\left(r - \frac{1}{r}\right)\sin\theta\right)^2}

Step 5: Use Previous Results to Simplify

Using our previous relations, recall r2=35r^2 = \frac{3}{5} and tanθ=53\tan\theta = \frac{5}{3}.

Find cosθ\cos\theta and sinθ\sin\theta using rr:

cosθ=3r(r2+1)=3r3r\cos\theta = \frac{3}{r(r^2 + 1)} = \frac{3r}{3r} sinθ=5r(r2+1)=5r5r\sin\theta = \frac{5}{r(r^2 + 1)} = \frac{5r}{5r}

Substitute these into the modulus formula:

z+1z=(5)2+(5)2=25+25=50=52\left|z + \frac{1}{z}\right| = \sqrt{(5)^2 + (5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}

Therefore, the modulus of z+1zz + \frac{1}{z} is:

52\boxed{5\sqrt{2}}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Modulus of Complex Numbers
Euler's Formula

Formulas

Polar form of complex numbers

Theorems

-

Suitable Grade Level

Advanced High School