Math Problem Statement

  1. Perhatikan gambar berikut.

K

60 deg

P

T

KL merupakan garis singgung persekutuan lingkaran (0, 4 cm) dan (P, 2 cm). Panjang KL adalah

a. 2sqrt(3) cm

b. 3sqrt(3) cm

C. 4sqrt(3) cm

d. 5sqrt(3) cm

e. 6sqrt(3) cm

Solution

To solve for the length of the common external tangent KLKL between two circles with radii r1=4r_1 = 4 cm and r2=2r_2 = 2 cm and given the angle between the radii and the tangent line at the points of tangency is 6060^\circ, we can use the formula for the length of a common external tangent between two circles:

L=d2(r1+r2)2L = \sqrt{d^2 - (r_1 + r_2)^2}

where:

  • dd is the distance between the centers of the circles,
  • r1r_1 and r2r_2 are the radii of the circles.
  1. Calculate the Distance dd: Since we have a 6060^\circ angle between the radii, we can apply the law of cosines in the triangle formed by the centers of the circles and one of the tangent points.

    d=r12+r222r1r2cos(60)d = \sqrt{r_1^2 + r_2^2 - 2 \cdot r_1 \cdot r_2 \cdot \cos(60^\circ)}

    Substituting the values: d=42+22242cos(60)d = \sqrt{4^2 + 2^2 - 2 \cdot 4 \cdot 2 \cdot \cos(60^\circ)} d=16+42420.5d = \sqrt{16 + 4 - 2 \cdot 4 \cdot 2 \cdot 0.5} d=16+48=12=23cmd = \sqrt{16 + 4 - 8} = \sqrt{12} = 2\sqrt{3} \, \text{cm}

  2. Find the Length of the Tangent KLKL: Now we apply the external tangent formula:

    KL=d2(r1r2)2KL = \sqrt{d^2 - (r_1 - r_2)^2}

    Substitute d=23d = 2\sqrt{3}, r1=4r_1 = 4, and r2=2r_2 = 2:

    KL=(23)2(42)2KL = \sqrt{(2\sqrt{3})^2 - (4 - 2)^2} KL=4322KL = \sqrt{4 \cdot 3 - 2^2} KL=124=8=22cmKL = \sqrt{12 - 4} = \sqrt{8} = 2\sqrt{2} \, \text{cm}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Circle Geometry
Trigonometry

Formulas

Common external tangent formula: L = √(d^2 - (r1 + r2)^2)
Distance formula using cosine: d = √(r1^2 + r2^2 - 2 * r1 * r2 * cos(angle))

Theorems

Law of Cosines

Suitable Grade Level

Grades 10-12