Math Problem Statement

Solve

Solution

Given the matrix A=(2142)A = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}, we need to find the value of IA+A2A4I - A + A^2 - A^4, where II is the identity matrix.

First, we calculate A2A^2: A2=AA=(2142)(2142)=(44228+84+4)=(0000)A^2 = A \cdot A = \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} = \begin{pmatrix} 4 - 4 & 2 - 2 \\ -8 + 8 & -4 + 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}

Since A2=0A^2 = 0, A4A^4 will also be zero because multiplying the zero matrix by any matrix still results in the zero matrix: A4=(A2)2=0A^4 = (A^2)^2 = 0

Now we substitute these into the expression: IA+A2A4=IA+00=IAI - A + A^2 - A^4 = I - A + 0 - 0 = I - A

The identity matrix II for a 2x2 matrix is: I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Thus, we have: IA=(1001)(2142)=(12010+41+2)=(1143)I - A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix} = \begin{pmatrix} 1 - 2 & 0 - 1 \\ 0 + 4 & 1 + 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}

Therefore, the value of IA+A2A4I - A + A^2 - A^4 is: (1143)\begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}

Do you have any questions or would you like more details on any part of this problem?

Here are some related questions to consider:

  1. What is the determinant of matrix AA?
  2. What is the inverse of matrix AA, if it exists?
  3. How do you find the eigenvalues and eigenvectors of matrix AA?
  4. What does it mean for a matrix to be nilpotent?
  5. How would you verify the result of IA+A2A4I - A + A^2 - A^4 using a different method?
  6. What is the trace of matrix AA?
  7. How can you use the characteristic polynomial to find powers of matrices?
  8. How does the Cayley-Hamilton theorem apply to this problem?

Tip: When dealing with matrix exponentiation, verifying intermediate results can help ensure accuracy in complex calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Matrix Exponentiation
Identity Matrix

Formulas

Matrix multiplication
Matrix subtraction

Theorems

Properties of matrices
Cayley-Hamilton theorem

Suitable Grade Level

Advanced High School