Math Problem Statement

The function f  is given by f(x) = 3x^2 + 1 . What is the average value of  f over the closed interval [1,3]?

Solution

To find the average value of a function f(x)f(x) over a closed interval [a,b][a, b], we use the formula:

Average value=1baabf(x)dx\text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx

Given f(x)=3x2+1f(x) = 3x^2 + 1 and the interval [1,3][1, 3], we can apply this formula.

Step 1: Set up the integral

Here, a=1a = 1 and b=3b = 3. So, the formula becomes:

Average value=13113(3x2+1)dx\text{Average value} = \frac{1}{3-1} \int_1^3 (3x^2 + 1) \, dx

Average value=1213(3x2+1)dx\text{Average value} = \frac{1}{2} \int_1^3 (3x^2 + 1) \, dx

Step 2: Evaluate the integral

First, compute the integral:

13(3x2+1)dx=133x2dx+131dx\int_1^3 (3x^2 + 1) \, dx = \int_1^3 3x^2 \, dx + \int_1^3 1 \, dx

  1. Evaluate 133x2dx\int_1^3 3x^2 \, dx:

    3x2dx=x3(using the power rule)\int 3x^2 \, dx = x^3 \quad \text{(using the power rule)}

    So,

    133x2dx=[x3]13=3313=271=26\int_1^3 3x^2 \, dx = \left[ x^3 \right]_1^3 = 3^3 - 1^3 = 27 - 1 = 26

  2. Evaluate 131dx\int_1^3 1 \, dx:

    131dx=x13=31=2\int_1^3 1 \, dx = x \Big|_1^3 = 3 - 1 = 2

Combine the results:

13(3x2+1)dx=26+2=28\int_1^3 (3x^2 + 1) \, dx = 26 + 2 = 28

Step 3: Calculate the average value

Now plug the integral result back into the average value formula:

Average value=12×28=14\text{Average value} = \frac{1}{2} \times 28 = 14

Thus, the average value of ff over the interval [1,3][1, 3] is 14\boxed{14}.

Would you like further clarification or have any more questions?

Related Questions:

  1. How do you find the average value of g(x)=4x2g(x) = 4x - 2 over the interval [2,2][-2, 2]?
  2. What is the average value of the function h(x)=sin(x)h(x) = \sin(x) over the interval [0,π][0, \pi]?
  3. How can you interpret the average value of a function geometrically?
  4. What is the average value of k(x)=exk(x) = e^x over the interval [0,1][0, 1]?
  5. How does changing the interval [a,b][a, b] affect the average value of a function?

Tip:

When finding the average value of a function over an interval, make sure to integrate correctly and carefully handle any algebraic steps. Use symmetry or known results to simplify the integration process where possible.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Average Value of a Function

Formulas

Average Value of a Function formula: \( \frac{1}{b-a} \int_a^b f(x) \, dx \)

Theorems

-

Suitable Grade Level

Grades 11-12