Math Problem Statement

write the binomial expansion for (4+x)^-1/2 in ascending powers of x up to and including the x^4 term

Solution

To expand (4+x)12(4 + x)^{-\frac{1}{2}} in ascending powers of xx, we can use the binomial series expansion.

The general binomial expansion for (a+b)n(a + b)^n is:

(a+b)n=an+(n1)an1b+(n2)an2b2+(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots

For (4+x)12(4 + x)^{-\frac{1}{2}}, we have a=4a = 4, b=xb = x, and n=12n = -\frac{1}{2}.

Now, apply the binomial expansion up to the x4x^4 term.

Step-by-step Expansion:

Start with a=4a = 4 and n=12n = -\frac{1}{2}. We expand around x=0x = 0.

(4+x)12=412(1+x4)12(4 + x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} \left(1 + \frac{x}{4}\right)^{-\frac{1}{2}} Since 412=124^{-\frac{1}{2}} = \frac{1}{2}, the expression becomes:

12(1+x4)12\frac{1}{2} \left(1 + \frac{x}{4}\right)^{-\frac{1}{2}}

Now expand (1+x4)12\left(1 + \frac{x}{4}\right)^{-\frac{1}{2}} using the binomial expansion formula.

(1+u)12=112u+38u2516u3+35128u4+(1 + u)^{-\frac{1}{2}} = 1 - \frac{1}{2}u + \frac{3}{8}u^2 - \frac{5}{16}u^3 + \frac{35}{128}u^4 + \cdots

Substitute u=x4u = \frac{x}{4} into the expansion:

(1+x4)12=112x4+38(x4)2516(x4)3+35128(x4)4+\left(1 + \frac{x}{4}\right)^{-\frac{1}{2}} = 1 - \frac{1}{2} \cdot \frac{x}{4} + \frac{3}{8} \cdot \left(\frac{x}{4}\right)^2 - \frac{5}{16} \cdot \left(\frac{x}{4}\right)^3 + \frac{35}{128} \cdot \left(\frac{x}{4}\right)^4 + \cdots

Simplify each term:

=1x8+3x21285x31024+35x416384+= 1 - \frac{x}{8} + \frac{3x^2}{128} - \frac{5x^3}{1024} + \frac{35x^4}{16384} + \cdots

Multiply by 12\frac{1}{2} to get the final expansion:

(4+x)12=12(1x8+3x21285x31024+35x416384)(4 + x)^{-\frac{1}{2}} = \frac{1}{2} \left( 1 - \frac{x}{8} + \frac{3x^2}{128} - \frac{5x^3}{1024} + \frac{35x^4}{16384} \right)

Now distribute 12\frac{1}{2}:

(4+x)12=12x16+3x22565x32048+35x432768(4 + x)^{-\frac{1}{2}} = \frac{1}{2} - \frac{x}{16} + \frac{3x^2}{256} - \frac{5x^3}{2048} + \frac{35x^4}{32768}

Final Expansion (up to x4x^4):

(4+x)12=12x16+3x22565x32048+35x432768(4 + x)^{-\frac{1}{2}} = \frac{1}{2} - \frac{x}{16} + \frac{3x^2}{256} - \frac{5x^3}{2048} + \frac{35x^4}{32768}


Would you like a more detailed explanation of any specific step, or do you have any further questions about binomial expansions?

Here are some related questions to explore:

  1. How do we calculate the binomial coefficients for negative exponents?
  2. Can the binomial expansion be used for non-integer powers of a binomial expression?
  3. How do you handle terms in a binomial series expansion when the exponent is a fraction?
  4. What happens if we expand the same expression for higher powers of xx?
  5. How do you find the radius of convergence for a binomial series?

Tip: For a binomial expansion to be valid, the absolute value of x4\frac{x}{4} must be less than 1, so the expansion is valid for x<4|x| < 4.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Negative Exponents
Series Expansion

Formulas

(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \cdots
(1 + u)^{-1/2} = 1 - \frac{1}{2}u + \frac{3}{8}u^2 - \frac{5}{16}u^3 + \frac{35}{128}u^4 + \cdots

Theorems

Binomial Theorem for Negative Exponents

Suitable Grade Level

Grades 11-12