Math Problem Statement

Use binomial expansions to show that sqrt((1 + 4x) / (1 - x)) ≈ 1 + (5/2)x - (5/8)x^2.

Solution

The problem asks us to use the binomial expansion to approximate the expression:

1+4x1x\sqrt{\frac{1 + 4x}{1 - x}}

and show that it is approximately:

1+52x58x2.1 + \frac{5}{2}x - \frac{5}{8}x^2.

Step-by-Step Solution:

  1. Rewrite the expression: 1+4x1x=(1+4x1x)1/2\sqrt{\frac{1 + 4x}{1 - x}} = \left( \frac{1 + 4x}{1 - x} \right)^{1/2}

  2. Apply the binomial expansion: We'll expand the numerator and denominator separately, using binomial expansions for small xx, and then combine them.

    Binomial expansion of (1+4x)1/2(1 + 4x)^{1/2}:

    The binomial expansion for (1+y)1/2(1 + y)^{1/2} is: (1+y)1/21+12y18y2for small y.(1 + y)^{1/2} \approx 1 + \frac{1}{2}y - \frac{1}{8}y^2 \quad \text{for small } y. Here, y=4xy = 4x, so: (1+4x)1/21+12(4x)18(4x)2=1+2x2x2.(1 + 4x)^{1/2} \approx 1 + \frac{1}{2}(4x) - \frac{1}{8}(4x)^2 = 1 + 2x - 2x^2.

    Binomial expansion of (1x)1/2(1 - x)^{-1/2}:

    Similarly, the binomial expansion for (1y)1/2(1 - y)^{-1/2} is: (1y)1/21+12y+38y2for small y.(1 - y)^{-1/2} \approx 1 + \frac{1}{2}y + \frac{3}{8}y^2 \quad \text{for small } y. Here, y=xy = x, so: (1x)1/21+12x+38x2.(1 - x)^{-1/2} \approx 1 + \frac{1}{2}x + \frac{3}{8}x^2.

  3. Combine the expansions: Now, multiply the two expansions we found: (1+2x2x2)(1+12x+38x2).\left( 1 + 2x - 2x^2 \right) \left( 1 + \frac{1}{2}x + \frac{3}{8}x^2 \right). Use the distributive property (multiplying each term):

    & \left( 1 + 2x - 2x^2 \right) \left( 1 + \frac{1}{2}x + \frac{3}{8}x^2 \right) = \\ & 1(1 + \frac{1}{2}x + \frac{3}{8}x^2) + 2x(1 + \frac{1}{2}x + \frac{3}{8}x^2) - 2x^2(1 + \frac{1}{2}x + \frac{3}{8}x^2). \end{aligned}$$ Expanding this out: $$\begin{aligned} & 1 + \frac{1}{2}x + \frac{3}{8}x^2 \\ & + 2x + x^2 + \frac{3}{4}x^3 \\ & - 2x^2 - x^3 - \frac{3}{4}x^4. \end{aligned}$$
  4. Simplify the terms: Combine like terms (group powers of xx):

    1 & + \left( \frac{1}{2}x + 2x \right) + \left( \frac{3}{8}x^2 + x^2 - 2x^2 \right) + O(x^3) \\ & = 1 + \frac{5}{2}x - \frac{5}{8}x^2. \end{aligned}$$

Thus, we have shown that:

1+4x1x1+52x58x2,\sqrt{\frac{1 + 4x}{1 - x}} \approx 1 + \frac{5}{2}x - \frac{5}{8}x^2,

which is the required result.


Would you like further clarification or details on any part of the solution?

Here are 5 related questions to explore further:

  1. How does the binomial expansion work for negative or fractional powers?
  2. How can we approximate higher-order terms in the expansion for greater accuracy?
  3. In which contexts are binomial expansions commonly used in calculus and physics?
  4. What is the radius of convergence for binomial series expansions?
  5. How does the approximation change for large values of xx?

Tip: When using binomial expansions, make sure the variable is within the range where the series converges, usually when the absolute value of xx is less than 1 for expansions like this.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra
Series Approximation

Formulas

Binomial Expansion for (1 + y)^n ≈ 1 + ny + (n(n - 1)y^2)/2 for small y
Expansion for (1 + 4x)^(1/2) ≈ 1 + 2x - 2x^2
Expansion for (1 - x)^(-1/2) ≈ 1 + (1/2)x + (3/8)x^2

Theorems

Binomial Theorem

Suitable Grade Level

University Level (Calculus/Advanced Algebra)