Math Problem Statement

ให้พิสูจน์ว่าค่าสัมประสิทธิ์ดังกล่างจะเป็นค่าประมาณการที่ไม่เอนเอียง unbiased estimator โดยทำให้อยู่ในเงื่อนไขตามรูป

พิสูจน์ว่าค่าสัมประสิทธิ์ดังกล่างจะเป็นค่าประมาณการที่ไม่เอนเอียง unbiased estimator โดยทำให้อยู่ในเงื่อนไขตามรูป

Solution

Explanation of the Uploaded Material:

  1. First Image (2.3 Deriving aia_i for the Best Linear Unbiased Estimator (BLUE)):

    • Goal: Find the values of aia_i such that μ^=i=1naiYi\hat{\mu} = \sum_{i=1}^{n} a_i Y_i becomes the best (linear) unbiased estimator for the parameter μ\mu.
    • Steps:
      • μ^\hat{\mu} is a linear estimator for μ\mu.
      • The expectation E(μ^)=μE(\hat{\mu}) = \mu, ensures μ^\hat{\mu} is unbiased.
      • The variance Var(μ^)\text{Var}(\hat{\mu}) must be minimized under the constraint i=1nai=1\sum_{i=1}^{n} a_i = 1.
      • Using the method of Lagrange multipliers:
        • Define L=σ2i=1nai2λ(i=1nai1)L = \sigma^2 \sum_{i=1}^{n} a_i^2 - \lambda (\sum_{i=1}^{n} a_i - 1).
        • First-order condition (FOC) gives ai=1na_i = \frac{1}{n}.
        • The minimized variance of μ^\hat{\mu} is σ2n\frac{\sigma^2}{n}.
      • Conclusion: The best (linear) unbiased estimator (BLUE) of μ\mu is μ^=1ni=1nYi\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i, with a minimum variance of σ2n\frac{\sigma^2}{n}.
  2. Second Image (Matrix Equation Y=Xβ+μY = X \beta + \mu):

    • Goal: Demonstrate that the coefficient β\beta is an unbiased estimator under the matrix equation Y=Xβ+μY = X \beta + \mu.
    • Matrix setup:
      • The response vector YY is given by a linear model Xβ+μX \beta + \mu, where XX is the design matrix, β\beta is the coefficient vector, and μ\mu is the error term.
    • To prove β\beta is an unbiased estimator:
      • Unbiasedness means E(β^)=βE(\hat{\beta}) = \beta.
      • This requires proving that the estimator of β\beta, derived from solving Y=Xβ+μY = X \beta + \mu, has expectation equal to the true value β\beta.
      • By assuming E(μ)=0E(\mu) = 0 and other typical assumptions, we can derive the unbiasedness condition.

Further Details:

Would you like detailed step-by-step proofs for each part, or clarifications on specific steps such as how the Lagrange multiplier is applied or how the matrix β\beta estimation process works?

Related Questions:

  1. How is the Lagrange multiplier method used to minimize variance in linear models?
  2. Why is μ^=1ni=1nYi\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_i considered the best linear unbiased estimator?
  3. What are the assumptions behind the unbiased estimator property for matrix models like Y=Xβ+μY = X\beta + \mu?
  4. How does the structure of the design matrix XX affect the estimation of β\beta?
  5. Can the approach in this problem be generalized to other linear regression models?

Tip:

For regression models, ensuring unbiasedness typically depends on correct specification of the model and assumptions about the error term, such as zero mean and constant variance.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Estimation
Unbiased Estimator
Lagrange Multipliers
Matrix Algebra in Linear Regression

Formulas

Lagrange multiplier: L = σ²∑a_i² - λ(∑a_i - 1)
Unbiased Estimator: E(μ̂) = μ
Variance Minimization: Var(μ̂) = σ²/n
Matrix Model: Y = Xβ + μ

Theorems

Best Linear Unbiased Estimator (BLUE)
Method of Lagrange Multipliers

Suitable Grade Level

University Level (Statistics, Linear Algebra)