Math Problem Statement

Find the average value h ave of the function h on the given interval.

h(x) = 7 cos4(x) sin(x),    [0, 𝜋]

Solution

To find the average value haveh_{\text{ave}} of the function h(x)=7cos4(x)sin(x)h(x) = 7 \cos^4(x) \sin(x) over the interval [0,π][0, \pi], we use the formula for the average value of a function:

have=1baabh(x)dxh_{\text{ave}} = \frac{1}{b-a} \int_a^b h(x) \, dx

Step 1: Define the integral and interval

Here:

  • h(x)=7cos4(x)sin(x)h(x) = 7 \cos^4(x) \sin(x)
  • Interval: [0,π][0, \pi]
  • a=0a = 0, b=πb = \pi

have=1π00π7cos4(x)sin(x)dxh_{\text{ave}} = \frac{1}{\pi - 0} \int_0^\pi 7 \cos^4(x) \sin(x) \, dx

Step 2: Simplify the integral

Factor out the constant 77 and simplify: have=7π0πcos4(x)sin(x)dxh_{\text{ave}} = \frac{7}{\pi} \int_0^\pi \cos^4(x) \sin(x) \, dx

Step 3: Use substitution

Let u=cos(x)u = \cos(x), so that du=sin(x)dxdu = -\sin(x) dx. The limits of integration change as follows:

  • When x=0x = 0, u=cos(0)=1u = \cos(0) = 1
  • When x=πx = \pi, u=cos(π)=1u = \cos(\pi) = -1

The integral becomes: 0πcos4(x)sin(x)dx=11u4du\int_0^\pi \cos^4(x) \sin(x) \, dx = -\int_1^{-1} u^4 \, du

Reversing the limits of integration to simplify: 11u4du=11u4du\int_1^{-1} u^4 \, du = \int_{-1}^1 u^4 \, du

Step 4: Evaluate the integral

The integral of u4u^4 is: u4du=u55+C\int u^4 \, du = \frac{u^5}{5} + C

Apply the limits: 11u4du=[u55]11=(1)55(1)55\int_{-1}^1 u^4 \, du = \left[ \frac{u^5}{5} \right]_{-1}^1 = \frac{(1)^5}{5} - \frac{(-1)^5}{5}

Simplify: 11u4du=15(15)=25\int_{-1}^1 u^4 \, du = \frac{1}{5} - \left(-\frac{1}{5}\right) = \frac{2}{5}

Step 5: Calculate haveh_{\text{ave}}

Substitute the result of the integral back into the formula for haveh_{\text{ave}}: have=7π25=145πh_{\text{ave}} = \frac{7}{\pi} \cdot \frac{2}{5} = \frac{14}{5\pi}

Final Answer:

have=145πh_{\text{ave}} = \frac{14}{5\pi}

Would you like further details or explanation?


Related Questions:

  1. How is the substitution method applied to integrals involving trigonometric functions?
  2. What are common techniques to handle even powers of trigonometric functions?
  3. Can this problem be solved without substitution? If so, how?
  4. How does the average value of a function relate to its integral over an interval?
  5. How would the solution change if the interval were [0,π2][0, \frac{\pi}{2}]?

Tip:

For definite integrals involving even powers of trigonometric functions, substitution often simplifies the computation significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integrals
Average Value of a Function
Trigonometric Substitution

Formulas

Average value formula: h_ave = (1 / (b - a)) ∫[a to b] h(x) dx
Substitution: u = cos(x), du = -sin(x) dx

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or introductory college calculus