Math Problem Statement

If A=[ 21 32 43 41 70 10 ], B =[ 15 76 −28 ], C = [11 91 −1 27] then prove that
(AB)C=A(BC).

Solution

To prove that (AB)C=A(BC)(AB)C = A(BC) for the given matrices AA, BB, and CC, we need to perform the matrix multiplications on both sides of the equation and show that they result in the same matrix.

Given Matrices:

21 & 32 & 43 \\ 41 & 70 & 10 \end{bmatrix}$$ $$B = \begin{bmatrix} 15 \\ 76 \\ -28 \end{bmatrix}$$ $$C = \begin{bmatrix} 11 & 91 & -1 & 27 \end{bmatrix}$$ ### Step 1: Calculate $$AB$$ (Matrix multiplication of $$A$$ and $$B$$). Matrix $$A$$ is $$2 \times 3$$, and matrix $$B$$ is $$3 \times 1$$. So the result of $$AB$$ will be a $$2 \times 1$$ matrix. $$AB = \begin{bmatrix} 21 & 32 & 43 \\ 41 & 70 & 10 \end{bmatrix} \begin{bmatrix} 15 \\ 76 \\ -28 \end{bmatrix}$$ To compute the elements of the resulting matrix $$AB$$: \[ (AB)_{1,1} = 21(15) + 32(76) + 43(-28) = 315 + 2432 - 120

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Associative Property of Matrix Multiplication

Formulas

(AB)C = A(BC)

Theorems

Associative Property of Matrix Multiplication

Suitable Grade Level

Grades 11-12