Math Problem Statement
If A=[ 21 32 43
41 70 10 ], B =[
15
76
−28
], C = [11 91 −1 27] then prove that
(AB)C=A(BC).
Solution
To prove that for the given matrices , , and , we need to perform the matrix multiplications on both sides of the equation and show that they result in the same matrix.
Given Matrices:
21 & 32 & 43 \\ 41 & 70 & 10 \end{bmatrix}$$ $$B = \begin{bmatrix} 15 \\ 76 \\ -28 \end{bmatrix}$$ $$C = \begin{bmatrix} 11 & 91 & -1 & 27 \end{bmatrix}$$ ### Step 1: Calculate $$AB$$ (Matrix multiplication of $$A$$ and $$B$$). Matrix $$A$$ is $$2 \times 3$$, and matrix $$B$$ is $$3 \times 1$$. So the result of $$AB$$ will be a $$2 \times 1$$ matrix. $$AB = \begin{bmatrix} 21 & 32 & 43 \\ 41 & 70 & 10 \end{bmatrix} \begin{bmatrix} 15 \\ 76 \\ -28 \end{bmatrix}$$ To compute the elements of the resulting matrix $$AB$$: \[ (AB)_{1,1} = 21(15) + 32(76) + 43(-28) = 315 + 2432 - 120Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Matrix Multiplication
Associative Property of Matrix Multiplication
Formulas
(AB)C = A(BC)
Theorems
Associative Property of Matrix Multiplication
Suitable Grade Level
Grades 11-12