Math Problem Statement

solve step by step

If A = [[1, 3], [1, 2]] and B = [[1, 2], [1, 1]], prove that (AB)^T = B^T A^T.

Solution

To solve the problem step by step, we will prove that (AB)T=BTAT(AB)^T = B^T A^T given the matrices:

A=[1312],B=[1211].A = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.

Step 1: Matrix Multiplication (ABAB)

First, compute the product ABAB: AB=[1312][1211].AB = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.

The resulting matrix is calculated as: AB=[(11+31)(12+31)(11+21)(12+21)].AB = \begin{bmatrix} (1 \cdot 1 + 3 \cdot 1) & (1 \cdot 2 + 3 \cdot 1) \\ (1 \cdot 1 + 2 \cdot 1) & (1 \cdot 2 + 2 \cdot 1) \end{bmatrix}.

Performing the calculations: AB=[4534].AB = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}.

Step 2: Transpose of ABAB ((AB)T(AB)^T)

Now take the transpose of the resulting matrix ABAB: (AB)T=[4534]T.(AB)^T = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}^T.

Transpose is achieved by swapping rows and columns: (AB)T=[4354].(AB)^T = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}.

Step 3: Transposes of BB and AA

Compute the transpose of BB (BTB^T) and AA (ATA^T).

For BTB^T: B=[1211],BT=[1121].B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \quad B^T = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.

For ATA^T: A=[1312],AT=[1132].A = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}.

Step 4: Compute BTATB^T A^T

Now compute the product BTATB^T A^T: BTAT=[1121][1132].B^T A^T = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}.

The resulting matrix is calculated as: BTAT=[(11+13)(11+12)(21+13)(21+12)].B^T A^T = \begin{bmatrix} (1 \cdot 1 + 1 \cdot 3) & (1 \cdot 1 + 1 \cdot 2) \\ (2 \cdot 1 + 1 \cdot 3) & (2 \cdot 1 + 1 \cdot 2) \end{bmatrix}.

Performing the calculations: BTAT=[4354].B^T A^T = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}.

Step 5: Verify (AB)T=BTAT(AB)^T = B^T A^T

We already computed: (AB)T=[4354],BTAT=[4354].(AB)^T = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}, \quad B^T A^T = \begin{bmatrix} 4 & 3 \\ 5 & 4 \end{bmatrix}.

Since (AB)T=BTAT(AB)^T = B^T A^T, the equality is proven.

Final Answer:

(AB)T=BTAT(AB)^T = B^T A^T


Would you like further clarification or details? Let me know!


Here are 5 related questions for further exploration:

  1. What is the general formula for the transpose of a product of matrices?
  2. How does associativity in matrix multiplication relate to this proof?
  3. What are the conditions for two matrices to be conformable for multiplication?
  4. How would the proof change if the matrices were not square?
  5. Can this property be extended to three or more matrices?

Tip: Always verify the dimensions of matrices before performing operations like multiplication or transposition!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Multiplication
Matrix Transpose
Linear Algebra

Formulas

(AB)^T = B^T A^T

Theorems

Transpose of the product of matrices theorem

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)