Math Problem Statement

ABCD is a square. P and Q are points lying on BC and CD respectively such that BP=CQ=1/3 AB. Denote the intersecting point of AP and PQ by R. Of the area of triangle BRP is 10cm square, find the area of ABCD.

Solution

We are given a square ABCDABCD, and points PP and QQ on sides BCBC and CDCD, respectively, such that BP=CQ=13ABBP = CQ = \frac{1}{3} AB. We are also told that the area of triangle BRPBRP is 10 cm², and we need to find the area of square ABCDABCD.

Step-by-Step Solution:

  1. Understanding the geometry:

    • Let the side length of square ABCDABCD be ss.
    • Since BP=13ABBP = \frac{1}{3} AB, we know that BP=13sBP = \frac{1}{3} s, and similarly, CQ=13sCQ = \frac{1}{3} s.

    Now, we place the square on a coordinate plane with the following coordinates:

    • A(0,0)A(0, 0)
    • B(s,0)B(s, 0)
    • C(s,s)C(s, s)
    • D(0,s)D(0, s)
  2. Coordinates of points PP and QQ:

    • Point PP lies on side BCBC, and BP=13sBP = \frac{1}{3} s, so the coordinates of PP are (s,s3)(s, \frac{s}{3}).
    • Point QQ lies on side CDCD, and CQ=13sCQ = \frac{1}{3} s, so the coordinates of QQ are (s3,s)\left( \frac{s}{3}, s \right).
  3. Equation of line APAP: The line APAP passes through points A(0,0)A(0, 0) and P(s,s3)P(s, \frac{s}{3}). The slope of APAP is: slope of AP=s30s0=13\text{slope of } AP = \frac{\frac{s}{3} - 0}{s - 0} = \frac{1}{3} The equation of line APAP is: y=13xy = \frac{1}{3}x

  4. Equation of line PQPQ: The line PQPQ passes through points P(s,s3)P(s, \frac{s}{3}) and Q(s3,s)Q\left( \frac{s}{3}, s \right). The slope of PQPQ is: slope of PQ=ss3s3s=2s32s3=1\text{slope of } PQ = \frac{s - \frac{s}{3}}{\frac{s}{3} - s} = \frac{\frac{2s}{3}}{-\frac{2s}{3}} = -1 The equation of line PQPQ is: ys3=1(xs)y - \frac{s}{3} = -1(x - s) Simplifying this: y=x+4s3y = -x + \frac{4s}{3}

  5. Finding the coordinates of point RR: Point RR is the intersection of lines APAP and PQPQ. We solve the system of equations: y=13xandy=x+4s3y = \frac{1}{3}x \quad \text{and} \quad y = -x + \frac{4s}{3} Setting the two equations equal: 13x=x+4s3\frac{1}{3}x = -x + \frac{4s}{3} Solving for xx: 13x+x=4s3\frac{1}{3}x + x = \frac{4s}{3} 43x=4s3\frac{4}{3}x = \frac{4s}{3} x=sx = s Substituting x=sx = s into y=13xy = \frac{1}{3}x: y=13sy = \frac{1}{3}s So, the coordinates of RR are (s,s3)(s, \frac{s}{3}).

  6. Area of triangle BRPBRP: The area of triangle BRPBRP can be calculated using the formula for the area of a triangle with vertices at (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), and (x3,y3)(x_3, y_3): Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)\text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| For triangle BRPBRP, the coordinates of BB, RR, and PP are:

    • B(s,0)B(s, 0)
    • R(s,s3)R(s, \frac{s}{3})
    • P(s,s3)P(s, \frac{s}{3})

    Substituting these into the area formula: Area=12s(s3s3)+s(s30)+s(0s3)\text{Area} = \frac{1}{2} \left| s\left(\frac{s}{3} - \frac{s}{3}\right) + s\left(\frac{s}{3} - 0\right) + s\left(0 - \frac{s}{3}\right) \right| Simplifying: Area=12s(0)+s(s3)+s(s3)\text{Area} = \frac{1}{2} \left| s(0) + s\left(\frac{s}{3}\right) + s\left(-\frac{s}{3}\right) \right| Area=12s(s3s3)\text{Area} = \frac{1}{2} \left| s\left(\frac{s}{3} - \frac{s}{3}\right) \right| Area=120\text{Area} = \frac{1}{2} \left| 0 \right| Thus, the area is

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Coordinate Geometry
Area of Triangle
Linear Equations

Formulas

Area of Triangle = 1/2 * |x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)|
Equation of a Line (Slope-Intercept Form)

Theorems

Area of Triangle by Coordinates
Intersection of Lines

Suitable Grade Level

Grades 9-12