Math Problem Statement

We are tasked to determine the angle between vectors \( \vec{a} \) and \( \vec{b} \) based on the given information: 1. \( |\vec{a}| = \sqrt{3} \), 2. \( |\vec{b}| = 2 \), 3. \( |2\vec{a} - \vec{b}| = 2\sqrt{7} \), 4. Find the angle \( (\vec{a}, \vec{b}) \).

Solution

We are tasked to determine the angle between vectors a\vec{a} and b\vec{b} based on the given information:

Given:

  1. a=3|\vec{a}| = \sqrt{3},
  2. b=2|\vec{b}| = 2,
  3. 2ab=27|2\vec{a} - \vec{b}| = 2\sqrt{7},
  4. Find the angle (a,b)(\vec{a}, \vec{b}).

Solution:

Let the angle between a\vec{a} and b\vec{b} be θ\theta. Using the formula for the magnitude of a vector combination: 2ab2=2a2+b222abcosθ.|2\vec{a} - \vec{b}|^2 = |2\vec{a}|^2 + |\vec{b}|^2 - 2|2\vec{a}||\vec{b}|\cos\theta.

Step 1: Calculate each term:

  • 2a2=(2a)2=(23)2=12|2\vec{a}|^2 = (2|\vec{a}|)^2 = (2\sqrt{3})^2 = 12,
  • b2=22=4|\vec{b}|^2 = 2^2 = 4,
  • 2ab2=(27)2=28|2\vec{a} - \vec{b}|^2 = (2\sqrt{7})^2 = 28.

Step 2: Substitute values into the formula:

28=12+42(23)(2)cosθ.28 = 12 + 4 - 2(2\sqrt{3})(2)\cos\theta.

Simplify: 28=1683cosθ.28 = 16 - 8\sqrt{3}\cos\theta.

Rearrange: 83cosθ=1628=12.8\sqrt{3}\cos\theta = 16 - 28 = -12.

Solve for cosθ\cos\theta: cosθ=1283=32.\cos\theta = \frac{-12}{8\sqrt{3}} = -\frac{\sqrt{3}}{2}.

Step 3: Interpret the result:

cosθ=32\cos\theta = -\frac{\sqrt{3}}{2} corresponds to θ=150\theta = 150^\circ.

Final Answer:

D. 150150^\circ


Would you like more details or have any further questions?

Here are 5 related questions for practice:

  1. How do you calculate the magnitude of a vector combination like 2ab2\vec{a} - \vec{b}?
  2. What are the properties of dot products when finding angles between vectors?
  3. Can you prove that cosθ=32\cos\theta = -\frac{\sqrt{3}}{2} leads to θ=150\theta = 150^\circ?
  4. What happens if the vectors a\vec{a} and b\vec{b} are orthogonal? How would cosθ\cos\theta change?
  5. What is the geometric significance of 2ab|2\vec{a} - \vec{b}| in this problem?

Tip: When solving vector problems, always verify if magnitudes and cosine values are consistent with the problem's context.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Dot Product
Magnitude of Vectors
Angle Between Vectors

Formulas

|\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta
|2\vec{a} - \vec{b}|^2 = |2\vec{a}|^2 + |\vec{b}|^2 - 2|2\vec{a}| |\vec{b}| \cos \theta

Theorems

Law of Cosines in Vector Form

Suitable Grade Level

Grades 11-12