Math Problem Statement

Даны векторы a = (0; 3; 4) и b = (3; 0; 4). Косинус угла между ними равен...

Solution

We are given two vectors:

a=(0,3,4)\mathbf{a} = (0, 3, 4)

b=(3,0,4)\mathbf{b} = (3, 0, 4)

The cosine of the angle φ\varphi between two vectors is given by the formula:

cosφ=abab\cos \varphi = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}

Step 1: Compute the dot product ab\mathbf{a} \cdot \mathbf{b}

The dot product of two vectors a=(a1,a2,a3)\mathbf{a} = (a_1, a_2, a_3) and b=(b1,b2,b3)\mathbf{b} = (b_1, b_2, b_3) is calculated as:

ab=a1b1+a2b2+a3b3\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3

Substituting the given values:

(03)+(30)+(44)=0+0+16=16(0 \cdot 3) + (3 \cdot 0) + (4 \cdot 4) = 0 + 0 + 16 = 16

Step 2: Compute the magnitudes of a\mathbf{a} and b\mathbf{b}

The magnitude of a vector a=(a1,a2,a3)\mathbf{a} = (a_1, a_2, a_3) is:

a=a12+a22+a32|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}

For a=(0,3,4)\mathbf{a} = (0, 3, 4):

a=02+32+42=0+9+16=25=5|\mathbf{a}| = \sqrt{0^2 + 3^2 + 4^2} = \sqrt{0 + 9 + 16} = \sqrt{25} = 5

For b=(3,0,4)\mathbf{b} = (3, 0, 4):

b=32+02+42=9+0+16=25=5|\mathbf{b}| = \sqrt{3^2 + 0^2 + 4^2} = \sqrt{9 + 0 + 16} = \sqrt{25} = 5

Step 3: Compute cosφ\cos \varphi

cosφ=165×5=1625\cos \varphi = \frac{16}{5 \times 5} = \frac{16}{25}

Thus, the cosine of the angle between the vectors is:

cosφ=1625\cos \varphi = \frac{16}{25}

Would you like a step-by-step explanation of how to find the angle φ\varphi itself?

Here are five related questions:

  1. How can we find the angle φ\varphi from cosφ\cos \varphi?
  2. What is the geometric interpretation of the dot product?
  3. How do we determine if two vectors are perpendicular using the dot product?
  4. What is the significance of the magnitude of a vector?
  5. How can we generalize the cosine formula to n-dimensional vectors?

Tip: The dot product is useful for checking if vectors are orthogonal (perpendicular). If ab=0\mathbf{a} \cdot \mathbf{b} = 0, then the vectors are perpendicular!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Dot Product
Cosine of the Angle between Vectors
Vector Magnitude

Formulas

cos(ϕ) = (a ⋅ b) / (|a| |b|)
a ⋅ b = a1*b1 + a2*b2 + a3*b3
|a| = √(a1^2 + a2^2 + a3^2)
|b| = √(b1^2 + b2^2 + b3^2)

Theorems

Dot Product Theorem
Cosine Formula for Angle between Vectors

Suitable Grade Level

Grades 10-12