Math Problem Statement

Solve it

Solve the mathematical problems provided in the image.

Solution

Let me analyze the math problems in your image. I’ll extract the details and solve each one step by step.### Transcribed Problems

The image contains the following math problems:

Section 1: Perform the Calculations

  1. (x27x+8)3(x2+2x3)(x^2 - 7x + 8) - 3(x^2 + 2x - 3)
  2. 6x5x72\frac{6x - 5 - x}{7 - 2}

Section 2: Simplify or Solve

  1. 9a2b÷(30)×46b9a^2b \div (-30) \times 46b
  2. 4312+274\sqrt{3} - \sqrt{12} + \sqrt{27}

Section 3: Expand

  1. (x+1)(3x23x+5)(x + 1)(3x^2 - 3x + 5)

Now, I'll solve each question step by step.


Solutions

1.1 (x27x+8)3(x2+2x3)(x^2 - 7x + 8) - 3(x^2 + 2x - 3)

Expand and simplify: (x27x+8)3(x2+2x3)(x^2 - 7x + 8) - 3(x^2 + 2x - 3) =x27x+83x26x+9= x^2 - 7x + 8 - 3x^2 - 6x + 9 Combine like terms: x23x2=2x2,  7x6x=13x,  8+9=17x^2 - 3x^2 = -2x^2,\ \ -7x - 6x = -13x,\ \ 8 + 9 = 17 Final result: 2x213x+17-2x^2 - 13x + 17


1.2 6x5x72\frac{6x - 5 - x}{7 - 2}

Simplify numerator and denominator: Numerator: 6x5x=5x5\text{Numerator: } 6x - 5 - x = 5x - 5 Denominator: 72=5\text{Denominator: } 7 - 2 = 5 Simplify fraction: 5x55=x1\frac{5x - 5}{5} = x - 1


2.1 9a2b÷(30)×46b9a^2b \div (-30) \times 46b

Simplify step by step: 9a2b÷(30)=9a2b30=3a2b109a^2b \div (-30) = \frac{9a^2b}{-30} = -\frac{3a^2b}{10} Multiply by 46b46b: 3a2b10×46b=138a2b210=13.8a2b2-\frac{3a^2b}{10} \times 46b = -\frac{138a^2b^2}{10} = -13.8a^2b^2


2.2 4312+274\sqrt{3} - \sqrt{12} + \sqrt{27}

Simplify each square root: 12=43=23,  27=93=33\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3},\ \ \sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3} Substitute: 4312+27=4323+334\sqrt{3} - \sqrt{12} + \sqrt{27} = 4\sqrt{3} - 2\sqrt{3} + 3\sqrt{3} Combine terms: (42+3)3=53(4 - 2 + 3)\sqrt{3} = 5\sqrt{3}


3.1 (x+1)(3x23x+5)(x + 1)(3x^2 - 3x + 5)

Expand using distributive property: (x+1)(3x23x+5)=x(3x23x+5)+1(3x23x+5)(x + 1)(3x^2 - 3x + 5) = x(3x^2 - 3x + 5) + 1(3x^2 - 3x + 5) =3x33x2+5x+3x23x+5= 3x^3 - 3x^2 + 5x + 3x^2 - 3x + 5 Combine like terms: 3x33x2+3x2+5x3x+5=3x3+2x+53x^3 - 3x^2 + 3x^2 + 5x - 3x + 5 = 3x^3 + 2x + 5


Final Answers

1.1. 2x213x+17-2x^2 - 13x + 17
1.2. x1x - 1
2.1. 13.8a2b2-13.8a^2b^2
2.2. 535\sqrt{3}
3.1. 3x3+2x+53x^3 + 2x + 5

Would you like detailed steps for any specific part?


Related Questions

  1. How do you simplify algebraic expressions effectively?
  2. What are the common mistakes in fraction simplification?
  3. How do you handle multiplication of terms with variables?
  4. Can square roots always be simplified?
  5. How do you verify if polynomial expansions are correct?

Tip: Always double-check your expanded terms to ensure proper combination of like terms!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomials
Simplification
Square Roots
Fractions

Formulas

Polynomial Expansion: (a + b)(c + d) = ac + ad + bc + bd
Square Root Simplification: √(ab) = √a × √b
Fraction Simplification: (a + b) / c = a/c + b/c

Theorems

Distributive Property of Multiplication over Addition
Simplification of Algebraic Fractions

Suitable Grade Level

Grades 9-12