Math Problem Statement

Solve the exercises provided in the image, including algebraic expansions, simplifications, quadratic equations, and area comparisons.

Solution

Thank you for uploading the image. I will analyze the mathematical exercises and provide solutions.


Exercise 5

We are given C=(5x3)2(2x1)(5x3)C = (5x - 3)^2 - (2x - 1)(5x - 3). Let's solve step-by-step:

1. Develop, reduce, and organize CC:

  • Expand each term: (5x3)2=25x230x+9(5x - 3)^2 = 25x^2 - 30x + 9 (2x1)(5x3)=10x211x+3(2x - 1)(5x - 3) = 10x^2 - 11x + 3

  • Subtract: C=(25x230x+9)(10x211x+3)C = (25x^2 - 30x + 9) - (10x^2 - 11x + 3) C=25x230x+910x2+11x3C = 25x^2 - 30x + 9 - 10x^2 + 11x - 3 C=15x219x+6C = 15x^2 - 19x + 6

2. Calculate CC for x=2x = -2:

Substitute x=2x = -2 into C=15x219x+6C = 15x^2 - 19x + 6: C=15(2)219(2)+6C = 15(-2)^2 - 19(-2) + 6 C=15(4)+38+6=60+38+6=104C = 15(4) + 38 + 6 = 60 + 38 + 6 = 104

3. Factorize CC:

The quadratic C=15x219x+6C = 15x^2 - 19x + 6 factors as: C=(3x2)(5x3)C = (3x - 2)(5x - 3)

4. Solve the equation (5x3)(23x)=0(5x - 3)(2 - 3x) = 0:

Set each factor to 0: 5x3=0or23x=05x - 3 = 0 \quad \text{or} \quad 2 - 3x = 0 x=35orx=23x = \frac{3}{5} \quad \text{or} \quad x = \frac{2}{3}


Exercise 6

1. Simplify A,B,CA, B, C without direct multiplication:

  • A=109×91A = 109 \times 91: Use the difference of squares: 109×91=(100+9)(1009)=100292=1000081=9919109 \times 91 = (100 + 9)(100 - 9) = 100^2 - 9^2 = 10000 - 81 = 9919

  • B=1252752B = 125^2 - 75^2: Again, use the difference of squares: B=(12575)(125+75)=50×200=10000B = (125 - 75)(125 + 75) = 50 \times 200 = 10000

  • C=1032C = 103^2: Use the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 with a=100a = 100 and b=3b = 3: C=1002+2(100)(3)+32=10000+600+9=10609C = 100^2 + 2(100)(3) + 3^2 = 10000 + 600 + 9 = 10609

2. Calculate x(3x1)2(4x2)x(3x - 1) - 2(4x - 2) for x=1x = -1:

Substitute x=1x = -1: x(3x1)2(4x2)=(1)(3(1)1)2(4(1)2)x(3x - 1) - 2(4x - 2) = (-1)(3(-1) - 1) - 2(4(-1) - 2) =(1)(31)2(42)=(1)(4)2(6)= (-1)(-3 - 1) - 2(-4 - 2) = (-1)(-4) - 2(-6) =4+12=16= 4 + 12 = 16

3. Calculate (3x4)2(2x+1)2(3x - 4)^2 - (2x + 1)^2 for x=2x = -2:

Substitute x=2x = -2: (3x4)2(2x+1)2=(3(2)4)2(2(2)+1)2(3x - 4)^2 - (2x + 1)^2 = (3(-2) - 4)^2 - (2(-2) + 1)^2 =(64)2(4+1)2=(10)2(3)2= (-6 - 4)^2 - (-4 + 1)^2 = (-10)^2 - (-3)^2 =1009=91= 100 - 9 = 91


Exercise 7

1. Express A1A_1 (area of rectangle ABCDABCD) in terms of xx:

The rectangle's dimensions are 2x+12x + 1 (length) and 3x53x - 5 (width): A1=(2x+1)(3x5)A_1 = (2x + 1)(3x - 5)

2. Express A2A_2 (area of polygon EFGHIJEFGHIJ) in terms of xx:

The total area is made by adding the squares and subtracting the rectangle: A2=(3x7)2z2A_2 = (3x - 7)^2 - z^2 where z=(3x7)(2x+1)=x8z = (3x - 7) - (2x + 1) = x - 8, so z2=(x8)2z^2 = (x - 8)^2: A2=(3x7)2(x8)2A_2 = (3x - 7)^2 - (x - 8)^2

Factorize using the difference of squares: [ A_2 = [(3x - 7) - (x - 8)][(3x - 7) + (x - 8)] ] A2=(2x+1)(4x15)A_2 = (2x + 1)(4x - 15)

3. Find xx such that A1=A2A_1 = A_2:

Set (2x+1)(3x5)=(2x+1)(4x15)(2x + 1)(3x - 5) = (2x + 1)(4x - 15). Divide by 2x+12x + 1 (valid if x12x \neq -\frac{1}{2}): 3x5=4x153x - 5 = 4x - 15 x=10x = 10

Verify that x=10x = 10 satisfies the original expressions and is valid for the geometric conditions.


Let me know if you want further details or explanations!

Here are 5 related questions for further practice:

  1. How do you systematically expand and simplify algebraic expressions?
  2. Can the area formulas in Exercise 7 be further simplified geometrically?
  3. What is the significance of the difference of squares in simplifying calculations?
  4. How do you check if solutions satisfy the conditions of a problem?
  5. Why is factoring an essential skill in solving quadratic equations?

Tip: Always verify your final solutions by substituting back into the original problem to ensure consistency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Factoring
Difference of Squares
Geometry

Formulas

Quadratic expansion: (a + b)^2 = a^2 + 2ab + b^2
Difference of squares: a^2 - b^2 = (a - b)(a + b)
Area of a rectangle: length × width

Theorems

Difference of Squares
Quadratic Equation Roots

Suitable Grade Level

Grades 8-10