Math Problem Statement

Find the coefficients and solve polynomial-related problems such as expansions, verifications, and simplifications.

Solution

I see that you've uploaded an image containing math problems about polynomials. Let me transcribe and solve them for you:


1. Troba els coeficients de P(x)Q(x)+P(x)R(x)P(x) \cdot Q(x) + P(x) \cdot R(x) essent P(x)=6x+1P(x) = 6x+1, Q(x)=3x22Q(x) = 3x^2-2 i R(x)=x2+14xR(x) = x^2+14x

We need to calculate:
P(x)Q(x)+P(x)R(x)P(x) \cdot Q(x) + P(x) \cdot R(x)

  1. P(x)Q(x)=(6x+1)(3x22)=18x312x+3x22P(x) \cdot Q(x) = (6x+1)(3x^2-2) = 18x^3 - 12x + 3x^2 - 2
    Simplify:
    18x3+3x212x218x^3 + 3x^2 - 12x - 2

  2. P(x)R(x)=(6x+1)(x2+14x)=6x3+84x2+x2+14xP(x) \cdot R(x) = (6x+1)(x^2+14x) = 6x^3 + 84x^2 + x^2 + 14x
    Simplify:
    6x3+85x2+14x6x^3 + 85x^2 + 14x

Add the two results:
(18x3+3x212x2)+(6x3+85x2+14x)=24x3+88x2+2x2(18x^3 + 3x^2 - 12x - 2) + (6x^3 + 85x^2 + 14x) = 24x^3 + 88x^2 + 2x - 2

Answer: Coefficients are 24,88,2,224, 88, 2, -2.


2. Calcula el valor numèric de 2x35x2+42x^3 - 5x^2 + 4 en x=2x = 2

Substitute x=2x = 2:
2(23)5(22)+4=2(8)5(4)+4=1620+4=02(2^3) - 5(2^2) + 4 = 2(8) - 5(4) + 4 = 16 - 20 + 4 = 0

Answer: 00.


3. Troba l'expressió algebraica que defineix l'àrea de 6 quadrats de costat x+yx+y i 6 rectangles de base xx i altura yy

  1. The area of one square is:
    (x+y)2=x2+2xy+y2(x+y)^2 = x^2 + 2xy + y^2

    So, the total area of 6 squares:
    6(x2+2xy+y2)=6x2+12xy+6y26(x^2 + 2xy + y^2) = 6x^2 + 12xy + 6y^2

  2. The area of one rectangle is:
    xy=xyx \cdot y = xy

    So, the total area of 6 rectangles:
    6(xy)=6xy6(xy) = 6xy

Add both areas:
6x2+12xy+6y2+6xy=6x2+18xy+6y26x^2 + 12xy + 6y^2 + 6xy = 6x^2 + 18xy + 6y^2

Answer: 6x2+18xy+6y26x^2 + 18xy + 6y^2.


4. És certa la igualtat 9x2+30x+25=(3x+5)29x^2 + 30x + 25 = (3x+5)^2?

Expand (3x+5)2(3x+5)^2:
(3x+5)2=9x2+30x+25(3x+5)^2 = 9x^2 + 30x + 25

The left and right sides are identical, so the equality is true.

Answer: Yes, it is true.


5. Troba els coeficients de (2x+1)2(2x+1)^2

Expand (2x+1)2(2x+1)^2:
(2x+1)2=(2x)(2x)+2(2x)(1)+(1)(1)=4x2+4x+1(2x+1)^2 = (2x)(2x) + 2(2x)(1) + (1)(1) = 4x^2 + 4x + 1

Answer: Coefficients are 4,4,14, 4, 1.


Would you like detailed explanations or clarifications? 😊


Related Questions:

  1. What happens if P(x)P(x) has more terms in problem 1?
  2. Can you calculate P(x)Q(x)R(x)P(x) \cdot Q(x) \cdot R(x) for problem 1?
  3. How do you find coefficients for any polynomial expression?
  4. How is the expansion of (x+y)2(x+y)^2 related to the binomial theorem?
  5. Can we solve problem 4 with inequalities instead of expansion?

Tip:

When multiplying polynomials, organize terms by degree to avoid errors in coefficients!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial Multiplication
Algebraic Expansion
Factoring
Simplification
Binomial Squares

Formulas

Polynomial multiplication: (a+b)(c+d) = ac+ad+bc+bd
Binomial square expansion: (x+y)^2 = x^2 + 2xy + y^2
Difference of squares: x^2 - b^2 = (x-b)(x+b)

Theorems

Binomial Theorem

Suitable Grade Level

Grade 8-10