Math Problem Statement

Find the volume of the solid formed by rotating the region enclosed by y = e^(4x) + 4, y = 0, x = 0, and x = 0.2 about the y-axis.

Solution

To solve this problem, we calculate the volume of the solid formed by rotating the given region about the y-axis using the method of cylindrical shells.

Problem Setup

The given function is y=e4x+4y = e^{4x} + 4, bounded by:

  • y=0y = 0 (the x-axis),
  • x=0x = 0 (vertical line),
  • x=0.2x = 0.2 (vertical line), and rotated about the y-axis.

Formula for Volume

Using the shell method: V=2πxminxmaxxf(x)dxV = 2\pi \int_{x_{\text{min}}}^{x_{\text{max}}} x \cdot f(x) \, dx Here:

  • f(x)=e4x+4f(x) = e^{4x} + 4,
  • xmin=0x_{\text{min}} = 0,
  • xmax=0.2x_{\text{max}} = 0.2.

Step-by-Step Calculation

V=2π00.2x(e4x+4)dxV = 2\pi \int_{0}^{0.2} x \cdot (e^{4x} + 4) \, dx

Break the Integral

V=2π[00.2xe4xdx+00.2x4dx]V = 2\pi \left[ \int_{0}^{0.2} x \cdot e^{4x} \, dx + \int_{0}^{0.2} x \cdot 4 \, dx \right]

Compute xe4xdx\int x e^{4x} dx:

Using integration by parts: \int x e^{4x} dx \quad \text{(let u = x, dv = e^{4x} dx)}. Then:

  • u=xu = x, du=dxdu = dx,
  • v=14e4xv = \frac{1}{4} e^{4x} (since dv=e4xdxdv = e^{4x} dx).

xe4xdx=x4e4x14e4xdx=x4e4x116e4x+C.\int x e^{4x} dx = \frac{x}{4} e^{4x} - \int \frac{1}{4} e^{4x} dx = \frac{x}{4} e^{4x} - \frac{1}{16} e^{4x} + C.

Now, evaluate from 0 to 0.2: 00.2xe4xdx=[x4e4x116e4x]00.2.\int_{0}^{0.2} x e^{4x} dx = \left[ \frac{x}{4} e^{4x} - \frac{1}{16} e^{4x} \right]_0^{0.2}.

At x=0.2x = 0.2: 0.24e0.8116e0.8.\frac{0.2}{4} e^{0.8} - \frac{1}{16} e^{0.8}.

At x=0x = 0: 0116e0=116.0 - \frac{1}{16} e^{0} = -\frac{1}{16}.

Thus: 00.2xe4xdx=(0.24e0.8116e0.8)(116).\int_{0}^{0.2} x e^{4x} dx = \left( \frac{0.2}{4} e^{0.8} - \frac{1}{16} e^{0.8} \right) - \left(-\frac{1}{16}\right).

Compute x4dx\int x \cdot 4 dx:

00.24xdx=400.2xdx=4[x22]00.2=4(0.2)22=40.042=0.08.\int_{0}^{0.2} 4x dx = 4 \int_{0}^{0.2} x dx = 4 \cdot \left[ \frac{x^2}{2} \right]_0^{0.2} = 4 \cdot \frac{(0.2)^2}{2} = 4 \cdot \frac{0.04}{2} = 0.08.

Combine Results

Now substitute back into the volume formula: V=2π[00.2xe4xdx+0.08].V = 2\pi \left[ \int_{0}^{0.2} x e^{4x} dx + 0.08 \right].

Substitute the computed values to get the final result. Would you like me to simplify these numerics further?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Volume of Solids of Revolution
Cylindrical Shell Method
Integration by Parts

Formulas

Volume of revolution (shell method): V = 2π ∫[x_min, x_max] x * f(x) dx
Integration by parts: ∫ u dv = uv - ∫ v du

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 or College Level