Math Problem Statement

Find the volume of the parallelepiped determined by the vectors a, b, and c. a =

1, 4, 2

, b =

−1, 1, 4

, c =

5, 1, 4

cubic units

Solution

The volume of a parallelepiped determined by three vectors a\mathbf{a}, b\mathbf{b}, and c\mathbf{c} is given by the absolute value of the scalar triple product:

V=a(b×c)V = | \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) |

Step 1: Compute the cross product of b×c\mathbf{b} \times \mathbf{c}

Let: b=(114),c=(514)\mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ 4 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix}

The cross product b×c\mathbf{b} \times \mathbf{c} is calculated as follows:

b×c=ijk114514\mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 4 \\ 5 & 1 & 4 \end{vmatrix}

This determinant expands to:

b×c=i1414j1454+k1151\mathbf{b} \times \mathbf{c} = \mathbf{i} \begin{vmatrix} 1 & 4 \\ 1 & 4 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -1 & 4 \\ 5 & 4 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -1 & 1 \\ 5 & 1 \end{vmatrix}

Calculating each 2x2 determinant:

  • i\mathbf{i}-component: 1×41×4=01 \times 4 - 1 \times 4 = 0
  • j\mathbf{j}-component: 1×45×4=420=24-1 \times 4 - 5 \times 4 = -4 - 20 = -24
  • k\mathbf{k}-component: 1×15×1=15=6-1 \times 1 - 5 \times 1 = -1 - 5 = -6

Thus, the cross product is:

b×c=(0246)\mathbf{b} \times \mathbf{c} = \begin{pmatrix} 0 \\ -24 \\ -6 \end{pmatrix}

Step 2: Compute the dot product a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})

Now, let: a=(142)\mathbf{a} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}

The dot product is:

a(b×c)=1×0+4×(24)+2×(6)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 1 \times 0 + 4 \times (-24) + 2 \times (-6)

a(b×c)=09612=108\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 - 96 - 12 = -108

Step 3: Take the absolute value

V=108=108 cubic unitsV = | -108 | = 108 \text{ cubic units}

Thus, the volume of the parallelepiped is 108\boxed{108} cubic units.

Would you like more details or have any questions?

Here are some related problems:

  1. Find the volume of a parallelepiped with different vectors.
  2. Calculate the scalar triple product for another set of vectors.
  3. Compute the cross product of two given vectors.
  4. Solve for the determinant of a 3x3 matrix.
  5. Find the area of a parallelogram formed by two vectors.

Tip: The scalar triple product a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) is a useful tool to determine whether vectors are coplanar — if the result is zero, they are coplanar.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Geometry
Linear Algebra

Formulas

Volume of a parallelepiped: V = |a · (b × c)|
Cross product formula: b × c
Dot product formula: a · (b × c)

Theorems

Scalar Triple Product
Properties of Determinants

Suitable Grade Level

Grades 11-12 or Undergraduate