Math Problem Statement

Verify, justifying each step. 1. (sin(θ) − cos(θ))^2 = 1 − sin(2θ) 2. (1 + cos(2θ)) / sin(2θ) * tan^2(θ) = tan(θ) 3. sin(3x) = 3 sin(x) cos^2(x) − sin^3(x)

Solution

Let's solve and verify each of these trigonometric identities, justifying each step as requested.

1. (sinθcosθ)2=1sin(2θ)(\sin \theta - \cos \theta)^2 = 1 - \sin(2\theta)

Step-by-step solution:

  1. Expand the left-hand side (LHS): (sinθcosθ)2=sin2θ2sinθcosθ+cos2θ(\sin \theta - \cos \theta)^2 = \sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta
  2. Use the Pythagorean identity: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1. =12sinθcosθ= 1 - 2 \sin \theta \cos \theta
  3. Apply the double angle identity for sine: sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta. =1sin(2θ)= 1 - \sin(2\theta) Thus, the left-hand side simplifies to 1sin(2θ)1 - \sin(2\theta), which matches the right-hand side (RHS). Verified.

2. 1+cos(2θ)sin(2θ)tan2θ=tanθ\frac{1 + \cos(2\theta)}{\sin(2\theta)} \cdot \tan^2 \theta = \tan \theta

Step-by-step solution:

  1. Recall that tan2θ=sin2θcos2θ\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}, so the expression becomes: 1+cos(2θ)sin(2θ)sin2θcos2θ\frac{1 + \cos(2\theta)}{\sin(2\theta)} \cdot \frac{\sin^2 \theta}{\cos^2 \theta}
  2. Use the double angle identities: cos(2θ)=12sin2θ\cos(2\theta) = 1 - 2 \sin^2 \theta and sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta. =1+(12sin2θ)2sinθcosθsin2θcos2θ= \frac{1 + (1 - 2 \sin^2 \theta)}{2 \sin \theta \cos \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta} Simplifying the numerator of the first fraction: =22sin2θ2sinθcosθsin2θcos2θ= \frac{2 - 2 \sin^2 \theta}{2 \sin \theta \cos \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta}
  3. Factor out a 2 from the numerator: =2(1sin2θ)2sinθcosθsin2θcos2θ= \frac{2(1 - \sin^2 \theta)}{2 \sin \theta \cos \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta}
  4. Since 1sin2θ=cos2θ1 - \sin^2 \theta = \cos^2 \theta, substitute: =2cos2θ2sinθcosθsin2θcos2θ= \frac{2 \cos^2 \theta}{2 \sin \theta \cos \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta}
  5. Cancel common terms: =sin2θsinθcosθ= \frac{\sin^2 \theta}{\sin \theta \cos \theta}
  6. Simplify: =sinθcosθ=tanθ= \frac{\sin \theta}{\cos \theta} = \tan \theta Thus, both sides are equal. Verified.

3. sin(3x)=3sinxcos2xsin3x\sin(3x) = 3 \sin x \cos^2 x - \sin^3 x

Step-by-step solution:

  1. Use the triple angle formula for sine: sin(3x)=3sinx4sin3x\sin(3x) = 3 \sin x - 4 \sin^3 x.
  2. Re-arrange the formula so that it becomes: sin(3x)=3sinx(1sin2x)sin3x\sin(3x) = 3 \sin x (1 - \sin^2 x) - \sin^3 x
  3. Use the Pythagorean identity: 1sin2x=cos2x1 - \sin^2 x = \cos^2 x, so we substitute: sin(3x)=3sinxcos2xsin3x\sin(3x) = 3 \sin x \cos^2 x - \sin^3 x Thus, both sides are equal. Verified.

Do you have any questions, or would you like more details on any of these steps?

Here are some related questions you might want to explore:

  1. How can you verify trigonometric identities more efficiently?
  2. What are other double angle identities besides sin(2θ)\sin(2\theta)?
  3. How does the expansion of (sinθcosθ)2(\sin \theta - \cos \theta)^2 compare to other squared binomial expansions?
  4. What are other forms of the triple angle identities for sine and cosine?
  5. How are trigonometric identities used in calculus?

Tip: Always check if you can simplify the trigonometric identities using known formulas like Pythagorean, double-angle, or sum-to-product identities!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Double Angle Identities
Pythagorean Identity
Algebraic Expansion

Formulas

Pythagorean Identity: sin^2(θ) + cos^2(θ) = 1
Double Angle Identity: sin(2θ) = 2 sin(θ) cos(θ)
Triple Angle Identity: sin(3x) = 3 sin(x) − 4 sin^3(x)

Theorems

Pythagorean Theorem
Double Angle Theorem
Triple Angle Theorem

Suitable Grade Level

Grades 11-12 (Precalculus)