Math Problem Statement

Dans une base orthonormée (i, j), on considère les vecteurs u = 2i et v = -1/2 i + √3/2 j. Calculer les expressions suivantes: (u + v)·(u - v), ||u + v||² et ||u - v||². En déduire que les vecteurs (u + 2v) et (u - 2v) sont orthogonaux.

Solution

Let me analyze the content of the image and provide you with a solution to the mathematical problem.The exercise provided involves calculations based on vectors u=2i\mathbf{u} = 2\mathbf{i} and v=12i+32j\mathbf{v} = -\frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} in an orthonormal basis (i,j)(\mathbf{i}, \mathbf{j}). Let's break it down:


1a. Calculate (u+v)(uv)(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})

Step 1: Add and subtract vectors

[ \mathbf{u} + \mathbf{v} = (2 - \frac{1}{2})\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} = \frac{4}{2} - \frac{1}{2}\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} \mathbf{}). <

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Addition
Dot Product
Norm of a Vector
Orthogonality

Formulas

Dot product: u·v = ux·vx + uy·vy
Norm squared: ||u||² = u·u
Orthogonality: u·v = 0

Theorems

Vectors are orthogonal if their dot product is zero.

Suitable Grade Level

Grades 11-12