Math Problem Statement

Olkoon u ja v ≠ 0 vektoreita ja uv vektorin u vektoriprojektio suuntaan v. Osoita että vektori u - uv on kohtisuorassa vektoria v vastaan.

Solution

We are tasked with proving that the vector uuv\mathbf{u} - \mathbf{u}_v is orthogonal (perpendicular) to the vector v\mathbf{v}, where:

  • uv\mathbf{u}_v represents the vector projection of u\mathbf{u} in the direction of v\mathbf{v}.

Step-by-step solution:

1. Formula for vector projection:

The vector projection of u\mathbf{u} onto v\mathbf{v} is given by: uv=uvvvv.\mathbf{u}_v = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}.

Here:

  • uv\mathbf{u} \cdot \mathbf{v} is the dot product of u\mathbf{u} and v\mathbf{v},
  • vv\mathbf{v} \cdot \mathbf{v} is the squared magnitude of v\mathbf{v},
  • uvvv\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} is the scalar component of the projection.

2. Define the vector uuv\mathbf{u} - \mathbf{u}_v:

Substitute uv\mathbf{u}_v into the expression uuv\mathbf{u} - \mathbf{u}_v: uuv=uuvvvv.\mathbf{u} - \mathbf{u}_v = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}.

Let us denote w=uuv\mathbf{w} = \mathbf{u} - \mathbf{u}_v. So: w=uuvvvv.\mathbf{w} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}.

3. Show that wv=0\mathbf{w} \cdot \mathbf{v} = 0:

The condition for w\mathbf{w} to be orthogonal to v\mathbf{v} is: wv=0.\mathbf{w} \cdot \mathbf{v} = 0.

Compute wv\mathbf{w} \cdot \mathbf{v}: wv=(uuvvvv)v.\mathbf{w} \cdot \mathbf{v} = \left( \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \right) \cdot \mathbf{v}.

Using the distributive property of the dot product: wv=uv(uvvvvv).\mathbf{w} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \cdot \mathbf{v} \right).

Simplify the second term:

  • Since vv=v2\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2, we have: wv=uvuvvv(vv).\mathbf{w} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} (\mathbf{v} \cdot \mathbf{v}).

The vv\mathbf{v} \cdot \mathbf{v} terms cancel out: wv=uvuv.\mathbf{w} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v}.

Thus: wv=0.\mathbf{w} \cdot \mathbf{v} = 0.


4. Conclusion:

Since wv=0\mathbf{w} \cdot \mathbf{v} = 0, the vector uuv\mathbf{u} - \mathbf{u}_v is orthogonal to v\mathbf{v}. Therefore, we have shown that: uuv is orthogonal to v.\mathbf{u} - \mathbf{u}_v \text{ is orthogonal to } \mathbf{v}.


Do you want further clarification or detailed examples?

5 Related Questions:

  1. What is the geometric interpretation of a vector projection?
  2. How do you compute the magnitude of a vector projection?
  3. Can a projection vector ever be longer than the original vector u\mathbf{u}?
  4. What are some practical applications of vector projections in physics or engineering?
  5. How would the result change if u\mathbf{u} and v\mathbf{v} were parallel?

Tip:

When solving vector projection problems, always verify the orthogonality condition by checking the dot product.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Orthogonality
Dot Product

Formulas

uv = (u · v / v · v) v
u - uv is orthogonal to v if (u - uv) · v = 0

Theorems

Orthogonality Condition

Suitable Grade Level

University-level or Advanced High School