Math Problem Statement

Fait cette question de math en terminal

ABCD est un tétraèdre et M est le point défini par : AM = 3AB - AC - AD. a) Exprimer le vecteur BM en fonction des vecteurs BC et BD. b) À quel plan contenant une face du tétraèdre le point M appartient-il ?

Solution

To solve this exercise regarding the tetrahedron ABCDABCD and the point MM, let’s break down the problem step by step.

Part a) Express vector BM\overrightarrow{BM} as a function of vectors BC\overrightarrow{BC} and BD\overrightarrow{BD}

We are given: AM=3ABACAD.\overrightarrow{AM} = 3\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{AD}. We need to express BM\overrightarrow{BM} in terms of BC\overrightarrow{BC} and BD\overrightarrow{BD}.

First, using the relationship BM=BA+AM\overrightarrow{BM} = \overrightarrow{BA} + \overrightarrow{AM}, and knowing that: BA=AB,\overrightarrow{BA} = -\overrightarrow{AB}, we substitute AM\overrightarrow{AM} into this equation: BM=AB+(3ABACAD).\overrightarrow{BM} = -\overrightarrow{AB} + (3\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{AD}). Simplifying this expression: BM=(3ABAB)ACAD,\overrightarrow{BM} = (3\overrightarrow{AB} - \overrightarrow{AB}) - \overrightarrow{AC} - \overrightarrow{AD}, BM=2ABACAD.\overrightarrow{BM} = 2\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{AD}.

Next, we express AB\overrightarrow{AB}, AC\overrightarrow{AC}, and AD\overrightarrow{AD} in terms of BC\overrightarrow{BC} and BD\overrightarrow{BD}:

  • AB=BA=BC+BD\overrightarrow{AB} = -\overrightarrow{BA} = \overrightarrow{BC} + \overrightarrow{BD},
  • AC=BC\overrightarrow{AC} = \overrightarrow{BC},
  • AD=BD\overrightarrow{AD} = \overrightarrow{BD}.

Substituting these into the equation for BM\overrightarrow{BM}: BM=2(BC+BD)BCBD.\overrightarrow{BM} = 2(\overrightarrow{BC} + \overrightarrow{BD}) - \overrightarrow{BC} - \overrightarrow{BD}. Simplifying this expression: BM=2BC+2BDBCBD,\overrightarrow{BM} = 2\overrightarrow{BC} + 2\overrightarrow{BD} - \overrightarrow{BC} - \overrightarrow{BD}, BM=BC+BD.\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{BD}.

Thus, the vector BM\overrightarrow{BM} is expressed as: BM=BC+BD.\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{BD}.

Part b) Determine which plane containing a face of the tetrahedron the point MM lies in

We are given that: AM=3ABACAD.\overrightarrow{AM} = 3\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{AD}. By analyzing this equation, note that it expresses MM as a linear combination of the vectors AB\overrightarrow{AB}, AC\overrightarrow{AC}, and AD\overrightarrow{AD}.

This means that point MM lies on the plane formed by points AA, CC, and DD, which is the face of the tetrahedron ACDACD.

Final Answers:

  • Part a): BM=BC+BD\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{BD}.
  • Part b): The point MM lies on the plane containing the face ACDACD of the tetrahedron.

Let me know if you need more details or have any questions!

Here are 5 related questions:

  1. How can we express AM\overrightarrow{AM} in terms of vectors BC\overrightarrow{BC} and BD\overrightarrow{BD}?
  2. How do we find the equation of the plane passing through points AA, CC, and DD?
  3. Can we express BM\overrightarrow{BM} in terms of different vector bases of the tetrahedron?
  4. How does the position of point MM change if the coefficients in AM\overrightarrow{AM} are altered?
  5. How would the solution change if the given point MM was defined differently, say as AM=2AB+ACADAM = 2\overrightarrow{AB} + \overrightarrow{AC} - \overrightarrow{AD}?

Tip: When dealing with tetrahedrons, a useful strategy is to express vectors in terms of multiple bases (like BC\overrightarrow{BC} and BD\overrightarrow{BD}) to simplify the problem geometry.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector geometry
Tetrahedron
Vector decomposition
Plane determination

Formulas

AM = 3AB - AC - AD
BM = BA + AM
BA = -AB
BM = BC + BD

Theorems

Vector addition
Planar geometry in a tetrahedron

Suitable Grade Level

Grade 12 / Terminale