Math Problem Statement

Solve it

The diagram shows a tetrahedron ABCD. M is the midpoint of CD. AB = 4 m, AC = 3 m, AD = 3 m. Calculate: (a) the angle ACB, (b) the length of BC, (c) the length of CD, (d) the length of BM, (e) the angle BCD.

Solution

Let’s solve this step by step. The given problem asks for the following calculations:

  1. Angle ACB\angle ACB
  2. Length of BCBC
  3. Length of CDCD
  4. Length of BMBM
  5. Angle BCD\angle BCD

From the diagram:

  • AC=3mAC = 3 \, \text{m},
  • AD=3mAD = 3 \, \text{m},
  • MM is the midpoint of CDCD,
  • AB=4mAB = 4 \, \text{m}.

Step 1: Calculate the angle ACB\angle ACB

We assume the tetrahedron lies in a coordinate geometry setting for simplicity. Let A=(0,0,0)A = (0, 0, 0), B=(4,0,0)B = (4, 0, 0), C=(0,3,0)C = (0, 3, 0), and D=(0,0,3)D = (0, 0, 3). This placement satisfies the given lengths AB=4AB = 4, AC=3AC = 3, and AD=3AD = 3.

The angle ACB\angle ACB can be found using the dot product formula: cos(θ)=ACBCACBC\cos(\theta) = \frac{\vec{AC} \cdot \vec{BC}}{\|\vec{AC}\| \|\vec{BC}\|}

  • AC=CA=(0,3,0)\vec{AC} = C - A = (0, 3, 0),
  • BC=CB=(4,3,0)\vec{BC} = C - B = (-4, 3, 0),
  • ACBC=(0)(4)+(3)(3)+(0)(0)=9\vec{AC} \cdot \vec{BC} = (0)(-4) + (3)(3) + (0)(0) = 9,
  • AC=(0)2+(3)2+(0)2=3\|\vec{AC}\| = \sqrt{(0)^2 + (3)^2 + (0)^2} = 3,
  • BC=(4)2+(3)2+(0)2=16+9=5\|\vec{BC}\| = \sqrt{(-4)^2 + (3)^2 + (0)^2} = \sqrt{16 + 9} = 5.

cos(θ)=935=915=0.6\cos(\theta) = \frac{9}{3 \cdot 5} = \frac{9}{15} = 0.6

Thus, θ=cos1(0.6)\theta = \cos^{-1}(0.6), and ACB53.13\angle ACB \approx 53.13^\circ.


Step 2: Calculate the length of BCBC

From the earlier calculation: BC=BC=5m.BC = \|\vec{BC}\| = 5 \, \text{m}.


Step 3: Calculate the length of CDCD

Since D=(0,0,3)D = (0, 0, 3) and C=(0,3,0)C = (0, 3, 0), CD=(00)2+(30)2+(03)2=0+9+9=18=32m.CD = \sqrt{(0 - 0)^2 + (3 - 0)^2 + (0 - 3)^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \, \text{m}.


Step 4: Calculate the length of BMBM

MM is the midpoint of CDCD.
Coordinates of MM: M=(0+02,3+02,0+32)=(0,1.5,1.5).M = \left(\frac{0 + 0}{2}, \frac{3 + 0}{2}, \frac{0 + 3}{2}\right) = (0, 1.5, 1.5).

The vector BM=MB=(04,1.50,1.50)=(4,1.5,1.5)\vec{BM} = M - B = (0 - 4, 1.5 - 0, 1.5 - 0) = (-4, 1.5, 1.5).
BM=BM=(4)2+(1.5)2+(1.5)2=16+2.25+2.25=20.54.53m.BM = \|\vec{BM}\| = \sqrt{(-4)^2 + (1.5)^2 + (1.5)^2} = \sqrt{16 + 2.25 + 2.25} = \sqrt{20.5} \approx 4.53 \, \text{m}.


Step 5: Calculate the angle BCD\angle BCD

Vectors:

  • BC=(4,3,0)\vec{BC} = (-4, 3, 0),
  • CD=(0,3,3)\vec{CD} = (0, -3, 3).

Dot product: BCCD=(4)(0)+(3)(3)+(0)(3)=9.\vec{BC} \cdot \vec{CD} = (-4)(0) + (3)(-3) + (0)(3) = -9.

Magnitudes:

  • BC=5\|\vec{BC}\| = 5,
  • CD=(0)2+(3)2+(3)2=18=32\|\vec{CD}\| = \sqrt{(0)^2 + (-3)^2 + (3)^2} = \sqrt{18} = 3\sqrt{2}.

cos(θ)=9532=9152=352.\cos(\theta) = \frac{-9}{5 \cdot 3\sqrt{2}} = \frac{-9}{15\sqrt{2}} = \frac{-3}{5\sqrt{2}}.

θ=cos1(352).\theta = \cos^{-1}\left(\frac{-3}{5\sqrt{2}}\right).

Simplify θ123.69\theta \approx 123.69^\circ.


Final Results:

  1. ACB53.13\angle ACB \approx 53.13^\circ,
  2. BC=5mBC = 5 \, \text{m},
  3. CD=32m4.24mCD = 3\sqrt{2} \, \text{m} \approx 4.24 \, \text{m},
  4. BM4.53mBM \approx 4.53 \, \text{m},
  5. BCD123.69\angle BCD \approx 123.69^\circ.

Do you need detailed explanations or additional clarifications on any of these steps?

Here are five related questions to explore further:

  1. How do you calculate the volume of a tetrahedron using vertex coordinates?
  2. What are other ways to calculate angles in 3D geometry?
  3. How can vector projections help in solving similar problems?
  4. How does the midpoint theorem apply to 3D figures?
  5. What are practical applications of tetrahedron geometry in engineering?

Tip: Always visualize 3D problems using coordinate geometry for clearer calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Vectors in 3D
Dot Product
Angle Calculation
Distance Formula

Formulas

Dot product formula: cos(θ) = (u · v) / (||u|| ||v||)
Distance formula: ||u|| = sqrt(x² + y² + z²)

Theorems

Vector Dot Product Theorem
Midpoint Theorem
Pythagorean Theorem in 3D

Suitable Grade Level

Grades 11-12