Math Problem Statement
zámítsa ki az⃗a vektor⃗ b vektorral párhuzamos (tangenciális) és mer®leges (normális) komponens vektorát! Jelölések a párhuzamos komponensre:⃗a b ≡⃗a t ≡⃗a ∥ ≡ proj⃗ b⃗a , valamint a mer®legesre:⃗a n ≡⃗a ⊥. Adja meg a tangenciális komponenst⃗ b, valamint⃗e b (⃗b irányú egységvektor) számszorosaként is!
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Projection
Parallel and Perpendicular Components
Unit Vectors
Formulas
Parallel Component: proj_b a = (a · b / b · b) · b
Perpendicular Component: a_perp = a - a_parallel
Unit Vector: e_b = b / |b|
a_parallel = (a · e_b) · e_b
Theorems
Vector Projection Theorem
Pythagorean Theorem in Vector Decomposition
Suitable Grade Level
Undergraduate (Linear Algebra or Physics)
Related Recommendation
Vector Components and Orthogonal Decomposition of v Along b
How to Find a Perpendicular Vector to a Given Vector in 2D
Vector Projection and Perpendicular Component for Vectors (3,5) and (6,1)
Finding the Orthogonal Component of Vectors a and b
Proof of Orthogonality Between Vector Projections in Linear Algebra