Math Problem Statement
Il prodotto vettoriale di due vettori unitari ha modulo +1. Allora
A. I due vettori devono essere ortogonali B. i due vettori devono essere positivi C. I due vettori hanno la stessa direzione D. I due vettori sono l'uno l'opposto dell'altro
motiva la risposta in modo breve
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Algebra
Cross Product
Trigonometry
Formulas
Cross product formula: |a × b| = |a| |b| sinθ
Unit vectors: |a| = 1, |b| = 1
Trigonometric relation: sinθ = 1 when θ = 90°
Theorems
Cross Product Theorem
Orthogonality of Vectors
Suitable Grade Level
Grades 10-12
Related Recommendation
Cross Products of Standard Unit Vectors: i × j, i × k, j × k
Understanding the Cross Product in Vector Calculus
Finding the Cross Product of Two Vectors and Checking Orthogonality
Cross Product of Vectors u = (2, 2, 0) and v = (2, 2, 2√2) | Compute |u × v|
Cosine of the Angle Between Cross Products of Vectors u and v