Math Problem Statement

Given the vector uu equal to 4, open angle bracket, cosine, 295, degrees, comma, sine, 295, degrees, close angle bracket4⟨cos295∘,sin295∘⟩ and vector vv equal to 7, open angle bracket, cosine, 50, degrees, comma, sine, 50, degrees, close angle bracket, comma7⟨cos50∘,sin50∘⟩, find the sum u, plus, vu+v and write your answer in magnitude and direction form with the magnitude rounded to the nearest tenth and the direction rounded to the nearest degree

Solution

To find the sum of the vectors u and v and express it in magnitude and direction form, follow these steps:

Step 1: Determine the components of the vectors u and v

Given:

  • u=4cos295,sin295\mathbf{u} = 4 \langle \cos 295^\circ, \sin 295^\circ \rangle
  • v=7cos50,sin50\mathbf{v} = 7 \langle \cos 50^\circ, \sin 50^\circ \rangle

We can calculate the components:

ux=4cos295,uy=4sin295\mathbf{u}_x = 4 \cos 295^\circ, \quad \mathbf{u}_y = 4 \sin 295^\circ

vx=7cos50,vy=7sin50\mathbf{v}_x = 7 \cos 50^\circ, \quad \mathbf{v}_y = 7 \sin 50^\circ

Step 2: Calculate the components

Using a calculator for the trigonometric functions:

cos2950.5736,sin2950.8192\cos 295^\circ \approx 0.5736, \quad \sin 295^\circ \approx -0.8192 cos500.6428,sin500.7660\cos 50^\circ \approx 0.6428, \quad \sin 50^\circ \approx 0.7660

Now, compute the components:

ux=4×0.57362.2944,uy=4×0.81923.2768\mathbf{u}_x = 4 \times 0.5736 \approx 2.2944, \quad \mathbf{u}_y = 4 \times -0.8192 \approx -3.2768

vx=7×0.64284.4996,vy=7×0.76605.3620\mathbf{v}_x = 7 \times 0.6428 \approx 4.4996, \quad \mathbf{v}_y = 7 \times 0.7660 \approx 5.3620

Step 3: Find the sum of the vectors

Add the corresponding components of u\mathbf{u} and v\mathbf{v}:

u+v=ux+vx,uy+vy\mathbf{u} + \mathbf{v} = \langle \mathbf{u}_x + \mathbf{v}_x, \mathbf{u}_y + \mathbf{v}_y \rangle

u+v=2.2944+4.4996,3.2768+5.3620\mathbf{u} + \mathbf{v} = \langle 2.2944 + 4.4996, -3.2768 + 5.3620 \rangle

u+v6.7940,2.0852\mathbf{u} + \mathbf{v} \approx \langle 6.7940, 2.0852 \rangle

Step 4: Calculate the magnitude of the resultant vector

The magnitude u+v\|\mathbf{u} + \mathbf{v}\| is given by:

u+v=(6.7940)2+(2.0852)2\|\mathbf{u} + \mathbf{v}\| = \sqrt{(6.7940)^2 + (2.0852)^2}

u+v46.1406+4.348050.48867.1\|\mathbf{u} + \mathbf{v}\| \approx \sqrt{46.1406 + 4.3480} \approx \sqrt{50.4886} \approx 7.1

Step 5: Determine the direction (angle) of the resultant vector

The direction θ\theta (relative to the positive x-axis) is given by:

θ=tan1(uy+vyux+vx)\theta = \tan^{-1}\left(\frac{\mathbf{u}_y + \mathbf{v}_y}{\mathbf{u}_x + \mathbf{v}_x}\right)

θ=tan1(2.08526.7940)\theta = \tan^{-1}\left(\frac{2.0852}{6.7940}\right)

θtan1(0.3069)17\theta \approx \tan^{-1}(0.3069) \approx 17^\circ

Final Answer:

  • Magnitude: 7.17.1 (rounded to the nearest tenth)
  • Direction: 1717^\circ (rounded to the nearest degree)

Would you like to explore further details or have any questions?

Related Questions:

  1. How do you calculate the unit vector of a given vector?
  2. What is the significance of vector magnitude in physics?
  3. How can vectors be used to model real-world situations?
  4. What is the process to resolve a vector into its components?
  5. How do vector operations relate to complex numbers?

Tip:

Always double-check the quadrant when calculating the direction of a vector sum to ensure the angle is correctly placed relative to the positive x-axis.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Trigonometry

Formulas

Vector addition
Magnitude of a vector
Direction of a vector

Theorems

-

Suitable Grade Level

Advanced High School