Math Problem Statement

Independent random samples selected from two normal populations produced the sample means and standard deviations shown to the right.

a.

Assuming equal​ variances, conduct the test

Upper H 0 : left parenthesis mu 1 minus mu 2 right parenthesis equals 0H0: μ1−μ2=0

against

Upper H Subscript a Baseline : left parenthesis mu 1 minus mu 2 right parenthesis not equals 0Ha: μ1−μ2≠0

using alpha equals 0.10 .α=0.10.

b.

Find and interpret the

9090​%

confidence interval for

left parenthesis mu 1 minus mu 2 right parenthesisμ1−μ2.

Sample 1

Sample 2

n 1n1equals=1818

n 2n2equals=1212

x overbar 1x1equals=5.35.3

x overbar 2x2equals=7.97.9

s 1s1equals=3.73.7

s 2s2equals=4.54.5

Question content area bottom

Part 1

a. Find the test statistic.

The test statistic is

enter your response here.

​(Round to two decimal places as​ needed.)

Solution

To solve this problem, let's go through the steps for conducting a two-sample t-test assuming equal variances. We’ll find the test statistic for Part a and then construct the confidence interval for Part b.


Given Data

  • Sample 1:

    • n1=18n_1 = 18
    • xˉ1=5.3\bar{x}_1 = 5.3
    • s1=3.7s_1 = 3.7
  • Sample 2:

    • n2=12n_2 = 12
    • xˉ2=7.9\bar{x}_2 = 7.9
    • s2=4.5s_2 = 4.5
  • Hypotheses:

    • H0:(μ1μ2)=0H_0 : (\mu_1 - \mu_2) = 0
    • Ha:(μ1μ2)0H_a : (\mu_1 - \mu_2) \neq 0
  • Significance level α=0.10\alpha = 0.10


Part (a): Finding the Test Statistic

Since we assume equal variances, we will pool the standard deviations.

  1. Calculate the pooled standard deviation sps_p: sp=(n11)s12+(n21)s22n1+n22s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}

  2. Calculate the test statistic tt: The formula for the test statistic tt is: t=xˉ1xˉ2sp1n1+1n2t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}

Step-by-Step Calculation

  1. Pooled Standard Deviation: sp=(181)(3.7)2+(121)(4.5)218+122s_p = \sqrt{\frac{(18 - 1) \cdot (3.7)^2 + (12 - 1) \cdot (4.5)^2}{18 + 12 - 2}} Simplifying: sp=1713.69+1120.2528=232.73+222.7528=455.48284.04s_p = \sqrt{\frac{17 \cdot 13.69 + 11 \cdot 20.25}{28}} = \sqrt{\frac{232.73 + 222.75}{28}} = \sqrt{\frac{455.48}{28}} \approx 4.04

  2. Test Statistic tt: t=5.37.94.04118+112t = \frac{5.3 - 7.9}{4.04 \sqrt{\frac{1}{18} + \frac{1}{12}}} Simplifying further: t=2.64.040.0556+0.0833=2.64.040.1389=2.64.040.3732=2.61.5081.72t = \frac{-2.6}{4.04 \cdot \sqrt{0.0556 + 0.0833}} = \frac{-2.6}{4.04 \cdot \sqrt{0.1389}} = \frac{-2.6}{4.04 \cdot 0.3732} = \frac{-2.6}{1.508} \approx -1.72

Part (b): 90% Confidence Interval for μ1μ2\mu_1 - \mu_2

The formula for the confidence interval is: (xˉ1xˉ2)±tα/2sp1n1+1n2(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}

For a 90% confidence interval and 28 degrees of freedom (since n1+n22=28n_1 + n_2 - 2 = 28), the critical tt-value t0.051.701t_{0.05} \approx 1.701.

  1. Margin of Error: Margin of Error=1.7014.040.37322.56\text{Margin of Error} = 1.701 \cdot 4.04 \cdot 0.3732 \approx 2.56

  2. Confidence Interval: (5.37.9)±2.56(5.3 - 7.9) \pm 2.56 2.6±2.56-2.6 \pm 2.56 So, the confidence interval is approximately: (5.16,0.04)(-5.16, -0.04)


Summary

  • Test Statistic: t1.72t \approx -1.72
  • 90% Confidence Interval: (5.16,0.04)(-5.16, -0.04)

Would you like additional details or have any further questions?


Related Questions to Explore

  1. What are the assumptions behind using a two-sample t-test with equal variances?
  2. How would the analysis change if we assumed unequal variances?
  3. What does a 90% confidence interval mean in practical terms?
  4. How do we interpret the result if the confidence interval includes zero?
  5. How can sample size affect the test statistic and confidence interval?

Tip

In hypothesis testing, always confirm the assumptions (e.g., normality, equal variances) to ensure valid results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hypothesis Testing
Confidence Interval
Two-Sample t-Test
Pooled Standard Deviation

Formulas

Pooled standard deviation: sp = √(( (n1 - 1)s1^2 + (n2 - 1)s2^2 ) / (n1 + n2 - 2))
Test statistic: t = (x̄1 - x̄2) / (sp * √(1/n1 + 1/n2))
Confidence interval: (x̄1 - x̄2) ± tα/2 * sp * √(1/n1 + 1/n2)

Theorems

Central Limit Theorem
t-Distribution

Suitable Grade Level

Undergraduate